CPE300: Digital System
Architecture and Design

Fall 2011
MW 17:30-18:45 CBC C316

Virtual Memory
11282011

http://www.egr.unlv.edu/~bimorris/cpe300/



Outline

- Review Cache
- Virtual Memory
- Projects



Memory Hierarchy, Cost, Performance

1. Registers — internal to CPU
2. Cache levels
3. Main memory

1-3
CPU || Cache |e—sIMain memory ke—p| Disk memory le—p| 12P€
memories memory
Component
Access type Random Random Random Direct Sequential
access access access access access
Capacity, 64-1024 8 KB-4 MB 64 MB-2 GB 10-200 GB 1 TB
bytes
Latency 4-10 ns 0.4-20 ns 10-50 ns 10 ms 10 ms—-10 s
Block size I word 16 words 16 words 4 KB 4 KB
Bandwidth System system 10-4000 MB/s 50 MB/s 1 MB/s
clock rate clock rate -
80 MB/s
Cost/MB High $10 $0.25 $0.002 $0.01




|

Memory Hierarchy

- Combine smaller, faster memory with slower, larger
memory
» Primary and secondary levels (e.g. cache and main
memory)
- Move data efficiently from slow to fast memory
using principle of locality
= Programs tend to reference a confined area of memory
repeatedly

- Spatial locality — if a given memory location is
referenced, addresses near it will likely be referenced
soon

- Temporal locality — if a given memory location is
referenced, it is likely to be referenced again soon

= Working set — set of memory locations referenced over
a fixed time window



|
Hits and Misses

- Hit — word is found at level requested

# hits
total # references

- Miss — word not found at level requested

= Must request for containing block in the next
higher level in memory hierarchy

s Missratio=1—h
- Access time
> tq = ht, + (1 — h)t;
° t, - primary memory access time

= Hit ratio (hit rate) - h =

st - secondary memory access time



- Insertion of high speed memory between CPU
and main memory
= May have more than one cache level

- Caching is usually transparent to programmer

- Caching operations must be handled in
hardware

» Cache blocks are item of commerce
= Block sizes in range of 16-256 bytes



R |
Cache Mapping Function

CPU

Cache Main memory
Word «—»| Block [€—>

\
. e

Mapping function

S — e v

- Responsible for all cache operations

> Placement strategy — where to place an incoming block in cache
= Replacement strategy — which block to replace upon miss

= Read/write policy — how to handle reads and writes upon cache hits
and misses

- Three common mapping functions
= Associative

> Direct-mapped

o Block-set-associative — combination of associative and direct-
mapped



Associative Mapped Cache

Tag Valid Cache
memory  bits memory
421 1 0 | Cache block 0
? o 1 ?
119 1| 2 | Cache block 2

2 1
<>
Tag One cache line,
field, 8 bytes
13 bits
Valid,
1 bit
Main memory address: 13 3
Tag Byte

Copyright © 2004 Pearson Prentice Hall, Inc.

Main
memory

MM block O
MM block 1

MM block 119

MM block 421

MM block 8191

<«

One cache line,
8 bytes

- Any block from main memory
can be put anywhere in cache

- Example: 16-bit address
« Cache structure:

One set of 256 lines — 256

block capacity

- 28 = 256 8-byte blocks

3-bits for byte sized word

- Main memory has 213 = 8192
8-byte blocks

256 x 13-bit tag memory

- Indicates block number in
cache position

256 X 1-bit valid memory

- Indicates if cache location
has a value

m]

o

m]

u]



Properties of Associative Cache

- Advantage

» Most flexible mapping because a main memory
block can go anywhere in the cache

- Disadvantage
= Large tag memory required
= Must search entire tag memory simultaneously -
lots of hardware required
= Replacement policy when cache is full causes issue



Direct Mapped Cache

- Divide main memory into sets

= All blocks in a set (group) can go into only one cache
location

- Example: 16-bit main memory address
= 256 x 8-byte cache
= The number of cache lines determines the number of sets
= Cache only examines single group

Tag Valid Cache

memory Dbits memory Main memory block numbers Group #:

0 | [1] o -<—> 0 [2s6[512] + [ - [ - [7680]7936] 0

9 1 1 < »| 1 257513 2305 7681|7937| 1

1 1] 2 2 | 258514 7682|7938| 2

. Cache address: | 8 | 3 |

1 I 255 < »| 255 511 | 767 8191 255 A A
D - Tag#: 0 1 2 . 9 - | 30|31 Main memory address: | 5 | 8 | 3 I
](Ti:,%‘ ngﬁe - Tag Group Byte
5 bits line,

8 bytes One cache line,



- ul
Properties of Direct Mapped Cache

- Advantage
= Requires less hardware than associative
= Simple (trivial) replacement policy

- Disadvantage
= Simple replacement policy

- Restrictive — poor use of cache space

» Thrashing — two blocks from the same group that
are frequently referenced will compete for the same
cache location

- Cause frequent switching of cache data and
performance degradation



L
Block-Set-Associative Cache

- Compromise between associative and direct-mapped to allow
several cache blocks for each memory group
- Example: 2-way set associative cache
> A set of 2 cache values per group
- 256 x 2 X 8-byte cache
- 256 sets of 2 lines each
= QOperation is same as direct-mapped

- Must do associative comparison between tag and cache memory
- Copy of direct mapped hardware for each set

Tag Cache
memory memory Main memory block numbers Set #:
2130 O 7680 l€«———>»| O | 256 . . » |7680(7936| O
219 1| 513 <«—>»| 1 | 257|518 7681|7937| 1
1 2 258 2 |258|514 7682(7938| 2 )
Cache group address: 8 3 |
< o 1L A A
0[1] 285 511 |e—>[FEel 511 767 8191| 255 Main memory address: | 5 | 8 |3 |
> < > Tag# O 1 2 . 9 = 30 | 31 Tag Set Byte
Tag One
field, cache |
2x9pls ling; One cache line
8 bytes '

8 bytes

Cache group address: “



L
Cache Read/Write Policies

- Hit policies
= Write-through — updates both cache and main
memory upon each write
= Write-back — updates only cache
- Update main memory only upon removal of block

- Dirty bit is set upon first write to indicate block must be
written back

- Miss Policies
= Read miss — bring block in from main memory
- Forward word as brought into cache
- Wait until entire line is filled then repeat cache request
= Write miss
- Write allocate — bring block into cache, then update

- Write-no allocate — write word to main memory without
bringing block into cache



.
Block Replacement Strategies

- Not needed with direct-mapped cache

- Least recently used (LRU)
= Track cache usage with counter

= Each block access causes
- Clear counter of accessed block

- Increment counters with values less than block being
accessed

- All others remain unchanged
> When set is full, remove line with highest count
- Random replacement — replace block at random
= Actually effective strategy in practice



. .|

Virtual Memory Hierarchy

- Memory hierarchy usually of main memory and disk

- Enormous speed difference between main memory
and disk
= Order of 10°factor

= Processor should not be kept waiting for transfer into
memory upon miss

- Multiprogramming shares the processor among
independent programs stored in memory
= On miss switch to another program

- Miss response can be assisted by processor

= 1/0, placement/replacement decisions, computations
of disk addresses



.
Virtual Memory

- Technique to use secondary storage (disks) to
extend the apparent size of physical memory
= Each process views memory as if it were its own
> Not restricted to physical size of memory
= Logical address space now usually larger than
physical memory
- Memory management unit (MMU)

= Responsible for mapping logical addresses issued

by CPU into physical addresses that are presented
to cache and main memory

- Mapping tables are used

= OS assists with selecting data appropriately for
working set



.
Paging and Block Placement

- Page — commonly used name for a disk block

- Page fault — synonymous with a miss

- Demand paging — pages moved from disk to
main memory only when a word in the page is
requested by the processor

- Block placement/replacement decisions must be
made each time a block is moved
> Placement — where a block should go

= Replacement — what blocks can be removed to
make room for new block



.
MMU and Address Translation

CPU Chip

CPU Logical IR Physical

address M’agfmg address dache Main memory Disk
aples

B — > >

Virtual
address

- Effective address — address computed by processor while
executing a program

- Logical address — synonymous with EA but generall
used to refer to address when viewed from outside the

CPU

- Virtual address — address generated from logical address
by MMU

« Physical address — address presented to the memory
unit

- Note: every address reference must be translated



L
Virtual Addresses

- Virtual address space is larger than logical
address - programs appear to get more
memory

- Example: PowerPC 601
= 32-bit logical addresses

- Maximum space allowed for a process

» 52-bit virtual addresses from MMU translation

» Process limited to 32-bits but main memory could
hold many processes



20l

Virtual Addressing Advantages

G . - Simplified addressing — each program can be

irtual memory Physical . . .

(per process) memory compiled into its own memory space

(starting at address 0) and could extend

Peseang beyond physical memory present in system

& > No address relocation required at load time

> No need to fragment program to
accommodate memory limits

- Cost effective use of physical memory — less

...... \ expensive secondary storage (disk) can
[t replace primary storage (RAM)
...... RAM > MMU brings in portions of program to
, T . physical memory as required
---------- A - Access control — each memory reference is
e translated so it can be simultaneously
Disk checked for read/write/execute privileges

- Hardware-level access control



i

Memory Management by Segmentation

- Allows memory to be divided
into segments of varying sizes

Main memory
> Less common than paged

t EER virtual memory
0 _T Segment - Each segment begins at virtual
/ Gap memory address 0
0 j Segment 1 - Segments loaded into/out
i) - Physical memory as needed
memory SEumEnte agaeY -+ Gaps between segments are
addresses 0 j called external fragmentation

Gap = Gaps could result in unusable
gaps of memory

Segment 9

1O |
Ly

Segment 3 0000

Copyright © 2004 Pearson Prentice Hall, Inc.

| O




Segmentation Mechanism

- Physical addresses are

. computed in the MMU
Main memory : .
» Virtual address is added
Segment 5 (integer addition) to segment
Gap base register
Offsetin | segment 1 = Segment limits may
segment . . .
" optionally be maintained for
irtual >

memory é} T Segment 6 error checks
address .

e — - MMU can switch between

Sebgans“g”t Gap separate segments
No . .
Bounds register Segment 9 > Adjust segment registers
error
i = Use segment tables
- One segment per program
Segment .
limit unit
register

Copyright © 2004 Pearson Prentice Hall, Inc.



Memory Management by Paging

Memory divided into fixed-size
pages

> 512-8K bytes

Virtual memory is ordered into

Secondary memory

linear ascending order
Virtual memory .
= Necessary for simple page
. number concatenation for
addressing
L 4 - MMU maps logical address to
/ physical address
4 .
— v = May be out of order in
Page n - 1 , P st ‘ memory
Program .
unit . o 11 ] ]
b — N Page n-11is not in physma}
Page T 7 - 7 memory by secondary (disk)
0 Page 0 A e

Demand paging only brings
pages into memory when
needed

Copyright & 2004 Pearson Prentice Hall, Inc.



Paging Address Translation

More complex mapping process
than segmentation

= More pages than segments
= How many pages per program?

Main memory
' ' - Page table maps virtual pages to
Deswed word }4
| . : | physical pages (or secondary
Virtual address from CPU . : Physical address memOI'Y)
[ Page number | Offset in page | : | ["hvsviaf page] Word | > Typically 1 page table per user per
. | . program unit
- F’TagTO Iable SRl Pagg in ¢ COHtI’O] fleldS
i primary memory = Access bits — read/write/execute
. g | permissions
]
|—® ”’32;?%,‘“’ = Usage bits — for replacement
e 71 i | secondary - Physical address is from
G i o é T | / R concatenation of page number and
un < registar | |
arror l word offset
Access- Physi T o
] oA L o Page fault causes exception and the
i predencalbi, ikOtl o slow update of memory from disk
- irty Dit, omnter o
usage bils  secondiary - Internal fragmentation because a
storage . .
Copyright © 2004 Pearson Prentice Hall, Inc. program willl most llkely not end at
page

» Trade-off between page size and
secondary update rate



- x|

Page Placement and Replacement

- Page tables are direct mapped

= Physical page computed directly from virtual page
number

= But, physical pages can reside anywhere in physical
memory (like associative cache)
- Page tables as shown (slide 24) result in large page
tables because each program requires a page table
entry for every page

= Can instead use multilevel page tables — root page
table pointing to other page tables in hierarchy

= Hash tables used to index only entries present in
physical memory

- Replacement strategies are generally LRU
= Use bit necessary to determine “stale” pages



Fast Address Translation

- Virtual memory is attractive but has
considerable overhead

= 2 memory references required for
each actual memory reference

Main memory or cache

I |
l | Desired word |« - First to retrieve page table entry
I | ° S 3
_ econd to access physical memory
, I ! Physical address
Virtual address from CPU 1 3
ocation
|Page number|  Word | |Physical page|  Word | . . .
i > Translation from virtual to physical

address translation must happen

Associative lookup TLB

of virtual page TLB hit. before cache access
number in TLB P is i . .
1 PR L » Caches designed for physical
it =5 — addresses
N - Translation lookaside buffer (TLB)

. is a small cache for virtual/physical

Look for / \ address translations
physical page .
inpagetable.  Virtual  Access- Physical = Allows processor to access physical

page control bits: page .

. - number  presence bit, number memory dlrectly

o Peee e i %Intt - TLB ma.lintai.ns valid, dirty,

usage bits protection bits

Copyright © 2004 Pearson Prentice Hall, Inc.

= Usually implemented as fully
associative cache for flexibility



Operation of Memory Hierarchy

CPU Cache Main memory Secondary memory

—»{ Virtual address | <
) l l l

C Search TLB ) C Search cache ) (Search page tabla Page fault. Get page
from secondary

memory

v

Update MM, cache,
and page table

Cache
A hit

Miss Miss
Update cache
from MM

l C}enerate physicaD
Generate physical address
address ¢

Return value
C from cache ) ( Update TLB

Copyright © 2004 Pearson Prentice Hall, Inc.



=

Memory System Design Summary

- Multilevel storage system of modern computer
= Cache, main memory, disk

- Semiconductor RAM — static and dynamic
= Used at fastest levels of memory hierarchy

= RAM speeds has greatest influence on memory system
performance

= Chips arranged into boards and modules
- 2-level memory hierarchy used to connected small
and fast with larger, slower memory

= Cache and main memory is the fastest/closest pair and
requires hardware operation

= Virtual memory is name of main memory/disk pair
and because of slower access can be software managed



