
http://www.egr.unlv.edu/~b1morris/cpe300/

CPE300: Digital System

Architecture and Design
Fall 2011

MW 17:30-18:45 CBC C316

Virtual Memory

11282011

Outline

• Review Cache

• Virtual Memory

• Projects

2

Memory Hierarchy, Cost, Performance

3

1. Registers – internal to CPU

2. Cache levels

3. Main memory

Memory Hierarchy
• Combine smaller, faster memory with slower, larger

memory
▫ Primary and secondary levels (e.g. cache and main

memory)
• Move data efficiently from slow to fast memory

using principle of locality
▫ Programs tend to reference a confined area of memory

repeatedly
▫ Spatial locality – if a given memory location is

referenced, addresses near it will likely be referenced
soon

▫ Temporal locality – if a given memory location is
referenced, it is likely to be referenced again soon

▫ Working set – set of memory locations referenced over
a fixed time window

4

Hits and Misses

• Hit – word is found at level requested

▫ Hit ratio (hit rate) - ℎ =
hits

total # references

• Miss – word not found at level requested

▫ Must request for containing block in the next
higher level in memory hierarchy

▫ Miss ratio = 1 − ℎ

• Access time

▫ 𝑡𝑎 = ℎ𝑡𝑝 + (1 − ℎ)𝑡𝑠

▫ 𝑡𝑝 - primary memory access time

▫ 𝑡𝑠 - secondary memory access time

5

Cache

• Insertion of high speed memory between CPU
and main memory

▫ May have more than one cache level

• Caching is usually transparent to programmer

• Caching operations must be handled in
hardware

• Cache blocks are item of commerce

▫ Block sizes in range of 16-256 bytes

6

Cache Mapping Function

• Responsible for all cache operations

▫ Placement strategy – where to place an incoming block in cache

▫ Replacement strategy – which block to replace upon miss

▫ Read/write policy – how to handle reads and writes upon cache hits
and misses

• Three common mapping functions

▫ Associative

▫ Direct-mapped

▫ Block-set-associative – combination of associative and direct-
mapped

7

Associative Mapped Cache
• Any block from main memory

can be put anywhere in cache

• Example: 16-bit address

• Cache structure:
▫ One set of 256 lines – 256

block capacity
 28 = 256 8-byte blocks

▫ 3-bits for byte sized word
 Main memory has 213 = 8192

8-byte blocks

▫ 256 x 13-bit tag memory
 Indicates block number in

cache position

▫ 256 x 1-bit valid memory
 Indicates if cache location

has a value

8

Properties of Associative Cache

• Advantage

▫ Most flexible mapping because a main memory
block can go anywhere in the cache

• Disadvantage

▫ Large tag memory required

▫ Must search entire tag memory simultaneously 
lots of hardware required

▫ Replacement policy when cache is full causes issue

9

Direct Mapped Cache
• Divide main memory into sets

▫ All blocks in a set (group) can go into only one cache
location

• Example: 16-bit main memory address
▫ 256 x 8-byte cache

▫ The number of cache lines determines the number of sets

▫ Cache only examines single group

10

Properties of Direct Mapped Cache

• Advantage

▫ Requires less hardware than associative

▫ Simple (trivial) replacement policy

• Disadvantage

▫ Simple replacement policy

 Restrictive – poor use of cache space

 Thrashing – two blocks from the same group that
are frequently referenced will compete for the same
cache location

 Cause frequent switching of cache data and
performance degradation

11

Block-Set-Associative Cache
• Compromise between associative and direct-mapped to allow

several cache blocks for each memory group
• Example: 2-way set associative cache

▫ A set of 2 cache values per group
 256 x 2 x 8-byte cache
 256 sets of 2 lines each

▫ Operation is same as direct-mapped
 Must do associative comparison between tag and cache memory
 Copy of direct mapped hardware for each set

12

Cache Read/Write Policies
• Hit policies

▫ Write-through – updates both cache and main
memory upon each write

▫ Write-back – updates only cache
 Update main memory only upon removal of block
 Dirty bit is set upon first write to indicate block must be

written back

• Miss Policies
▫ Read miss – bring block in from main memory

 Forward word as brought into cache
 Wait until entire line is filled then repeat cache request

▫ Write miss
 Write allocate – bring block into cache, then update
 Write-no allocate – write word to main memory without

bringing block into cache

13

Block Replacement Strategies

• Not needed with direct-mapped cache

• Least recently used (LRU)

▫ Track cache usage with counter

▫ Each block access causes

 Clear counter of accessed block

 Increment counters with values less than block being
accessed

 All others remain unchanged

▫ When set is full, remove line with highest count

• Random replacement – replace block at random

▫ Actually effective strategy in practice

14

Virtual Memory Hierarchy

• Memory hierarchy usually of main memory and disk

• Enormous speed difference between main memory
and disk

▫ Order of 106 factor

▫ Processor should not be kept waiting for transfer into
memory upon miss

• Multiprogramming shares the processor among
independent programs stored in memory

▫ On miss switch to another program

• Miss response can be assisted by processor

▫ I/O, placement/replacement decisions, computations
of disk addresses

15

Virtual Memory

• Technique to use secondary storage (disks) to
extend the apparent size of physical memory
▫ Each process views memory as if it were its own
▫ Not restricted to physical size of memory
▫ Logical address space now usually larger than

physical memory

• Memory management unit (MMU)
▫ Responsible for mapping logical addresses issued

by CPU into physical addresses that are presented
to cache and main memory
 Mapping tables are used

▫ OS assists with selecting data appropriately for
working set

16

Paging and Block Placement

• Page – commonly used name for a disk block

• Page fault – synonymous with a miss

• Demand paging – pages moved from disk to
main memory only when a word in the page is
requested by the processor

• Block placement/replacement decisions must be
made each time a block is moved

▫ Placement – where a block should go

▫ Replacement – what blocks can be removed to
make room for new block

17

MMU and Address Translation

• Effective address – address computed by processor while
executing a program

• Logical address – synonymous with EA but generally
used to refer to address when viewed from outside the
CPU

• Virtual address – address generated from logical address
by MMU

• Physical address – address presented to the memory
unit

• Note: every address reference must be translated

18

CPU Chip

Virtual Addresses

• Virtual address space is larger than logical
address  programs appear to get more
memory

• Example: PowerPC 601

▫ 32-bit logical addresses

 Maximum space allowed for a process

▫ 52-bit virtual addresses from MMU translation

 Process limited to 32-bits but main memory could
hold many processes

19

Virtual Addressing Advantages
• Simplified addressing – each program can be

compiled into its own memory space
(starting at address 0) and could extend
beyond physical memory present in system

▫ No address relocation required at load time

▫ No need to fragment program to
accommodate memory limits

• Cost effective use of physical memory – less
expensive secondary storage (disk) can
replace primary storage (RAM)

▫ MMU brings in portions of program to
physical memory as required

• Access control – each memory reference is
translated so it can be simultaneously
checked for read/write/execute privileges

▫ Hardware-level access control

20

Memory Management by Segmentation

• Allows memory to be divided
into segments of varying sizes

▫ Less common than paged
virtual memory

• Each segment begins at virtual
memory address 0

• Segments loaded into/out
memory as needed

• Gaps between segments are
called external fragmentation

▫ Gaps could result in unusable
gaps of memory

21

Segmentation Mechanism
• Physical addresses are

computed in the MMU

▫ Virtual address is added
(integer addition) to segment
base register

▫ Segment limits may
optionally be maintained for
error checks

• MMU can switch between
separate segments

▫ Adjust segment registers

▫ Use segment tables

 One segment per program
unit

22

Memory Management by Paging
• Memory divided into fixed-size

pages
▫ 512-8K bytes

• Virtual memory is ordered into
linear ascending order
▫ Necessary for simple page

number concatenation for
addressing

• MMU maps logical address to
physical address
▫ May be out of order in

memory

▫ Page n-1 is not in physical
memory by secondary (disk)

• Demand paging only brings
pages into memory when
needed

23

Paging Address Translation
• More complex mapping process

than segmentation
▫ More pages than segments
▫ How many pages per program?

• Page table maps virtual pages to
physical pages (or secondary
memory)
▫ Typically 1 page table per user per

program unit
• Control fields

▫ Access bits – read/write/execute
permissions

▫ Usage bits – for replacement
• Physical address is from

concatenation of page number and
word offset
▫ Page fault causes exception and the

slow update of memory from disk
• Internal fragmentation because a

program will most likely not end at
page
▫ Trade-off between page size and

secondary update rate

24

Page Placement and Replacement

• Page tables are direct mapped
▫ Physical page computed directly from virtual page

number
▫ But, physical pages can reside anywhere in physical

memory (like associative cache)

• Page tables as shown (slide 24) result in large page
tables because each program requires a page table
entry for every page
▫ Can instead use multilevel page tables – root page

table pointing to other page tables in hierarchy
▫ Hash tables used to index only entries present in

physical memory

• Replacement strategies are generally LRU
▫ Use bit necessary to determine “stale” pages

25

Fast Address Translation
• Virtual memory is attractive but has

considerable overhead
▫ 2 memory references required for

each actual memory reference

 First to retrieve page table entry

 Second to access physical memory
location

▫ Translation from virtual to physical
address translation must happen
before cache access

 Caches designed for physical
addresses

• Translation lookaside buffer (TLB)
is a small cache for virtual/physical
address translations
▫ Allows processor to access physical

memory directly

 TLB maintains valid, dirty,
protection bits

▫ Usually implemented as fully
associative cache for flexibility

26

Operation of Memory Hierarchy

27

Memory System Design Summary

• Multilevel storage system of modern computer
▫ Cache, main memory, disk

• Semiconductor RAM – static and dynamic
▫ Used at fastest levels of memory hierarchy
▫ RAM speeds has greatest influence on memory system

performance
▫ Chips arranged into boards and modules

• 2-level memory hierarchy used to connected small
and fast with larger, slower memory
▫ Cache and main memory is the fastest/closest pair and

requires hardware operation
▫ Virtual memory is name of main memory/disk pair

and because of slower access can be software managed

28

