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Pipelining 
• Process of issuing a new instruction before the previous 

one has completed execution 
▫ Favorite technique for RISC processors 
▫ Hide latency of instruction execution (multiple clock cycles 

for a single instruction) 
• Goal to keep equipment busy as much of the time as 

possible 
▫ Total throughput may be increased by decreasing the 

amount of work done at a given stage and increasing the 
number of stages (simple tasks to accomplish instruction 
execution) 

• Consequences for fetch-execute cycle 
▫ Previous instruction not guaranteed to be completed before 

next operation begins 
▫ Results of previous operation not free available at next 

operation 
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SRC Pipeline Registers and RTN 

• Pipeline registers pass 
info from stage to 
stage 

• RTN specifies output 
register values in 
terms of stage register 
values 
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Pipeline Datapath and Control  
• Multiplexer 

control stressed 
in figure 

• Most control 
signals sown and 
given values 
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Functions of SRC Pipeline Stages 
• Stage 1: Instruction fetch 

▫ PC incremented or replaced by successful branch in stage 2 
• Stage 2: Decode and operand access 

▫ Load/store gets operands for address computation 
▫ Store gets register value to be stored as 3rd operand 
▫ ALU operation gets 2 registers or register and constant 

• Stage 3: ALU operations 
▫ Calculates effective address or does arithmetic/logic 
▫ May pass through link PC or value to be stored in memory 

• Stage 4: Data memory access 
▫ Passes Z4 to Z5 unchanged for non-memory instructions 
▫ Load fills Z5 from memory 
▫ Store uses address from Z4 and data from MD4 (no longer 

needed) 
• Stage 5: Writes result register 

▫ Z5 contains value to be written, which can be ALU result, 
effective address, PC link value, or fetched data 

▫ ra field always specifies result register in SRC 
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Pipeline Hazards 

• Deterministic events that are a side-effect of 
having instructions in pipeline 

▫ Parallel execution 

▫ Instruction dependence – instruction depends on 
result of previous instruction that is not yet 
completely executed 

• Two categories of hazards 

▫ Data hazards – incorrect use of old and new data 

▫ Branch hazards – fetch of wrong instruction on a 
change in the PC 
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Branch Hazards 

• Branch targets determined in stage 2 
▫ Instruction following the branch instruction will enter 

the pipeline 
▫ Branch delay states following instruction gets executed 

without regard for branch action 
 Branch delay slot instruction executed before branch is 

taken 

• Branch prediction 
▫ Improve pipeline performance by trying to guess if the 

branch will be taken 
 Keep information to tell if instruction already seen and 

PC values after execution 

 Delay only when prediction is wrong 

▫ Lots effort in designing prediction schemes 
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Data Hazards 

• Incorrect use of old and new data 
• Read after write (RAW) hazard 

▫ Flow dependence – instruction uses data 
produced by a previous one 

• Write after read (WAR) hazard 
▫ Anti-dependence – instruction writes a new value 

over one that is still needed by a previous 
instruction 

• Write after write (WAW) hazard 
▫ Output dependence – two parallel instructions 

write the same register and must do it in the order 
they were issued 
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Detecting Hazards 

• Pairs of instructions must be considered to detect 
hazards 

• Data is normally available after being written to a 
register 
▫ Use data forwarding to make it available as early as 

stage it was produced 
 Stage 3 output for ALU results 

 Stage 4 for memory fetch 

▫ Receive data as late as stage in which they are used 
 Operands normally needed in stage 2 

 Stage 2 for branch target 

 Stage 3 for ALU operands and address modifier 

 Stage 4 for stored register 
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Data Hazards in SRC 

• All data memory access occurs in stage 4 
meaning all memory reads and writes are 
sequential and do not cause hazards 

• Registers written in the last stage 

▫ WAW and WAR hazards do not occur 

▫ Two writes occur in order issued 

▫ Write always follows a previously issued read 

• Only RAW hazards exist 

▫ Values written to register at end of stage 5 may be 
needed by a following instruction at beginning of 
stage 2 
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Possible Solutions to Register Data Hazard 

• Detection 
▫ Machine manual could give rules specifying a 

dependent instruction must have minimum 
number of steps from instruction it depends on 

▫ Can be done by compiler but generally too 
restrictive 

▫ Dependence on following stage can be detected 
since operation and operands known at each stage 

• Correction (hardware) 
▫ Dependent instruction “stalled” to allow those 

ahead in the pipeline to complete 
▫ Result “forwarded” to an earlier stage without 

waiting for a register write 
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RAW, WAW, and WAR Hazards 

• RAW hazards due to causality 
▫ Cannot use value before it has been produced 
▫ Requires data forwarding 

• WAW and WAR hazards can only occur when 
instructions executed in parallel or out of order 
▫ Not possible in SRC 
▫ Arise because registers have the same name 

 Can be fixed by renaming one of the registers 
 Delay the update of a register until appropriate value 

produced 
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Instruction Pair Hazard Interaction 

• 4/1 indicates the normal/forwarded instruction 
separation 
▫ 4 instruction separation normally 
▫ 1 indicates only a single stage of separation (1 instruction) 
▫ Many have 4/1 and gives rise to approximately 1 instruction 

per clock cycle 
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alu load ladr brl 

6/4 6/5 6/4 6/2 

alu 2/3 4/1 4/2 4/1 4/1 

load 2/3 4/1 4/2 4/1 4/1 

ladr 2/3 4/1 4/2 4/1 4/1 

store 2/3 4/1 4/2 4/1 4/1 

branch 2/2 4/2 4/3 4/2 4/1 

Read from 
register file 
 
Stage 
normally/latest 
needed 

Write to register file 
Stage data normally/earliest available 



Delays Unavoidable by Forwarding 

• Loaded values cannot be available to next 
instruction even with forwarding 
▫ Restrict compiler from putting dependent instruction 

in position right after load (next 2 positions for 
branch) 

• Target register cannot be forwarded to branch from 
immediately preceding instruction 
▫ Code restricted so branch target is not changed by 

instruction preceding branch (previous 2 instructions 
if load from memory) 

▫ Not to be confused with branch delay slot 
 Branch delay – dependence fetch on branch 

 This is branch instruction dependent on some instruction 
before it 
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Stalling Pipeline on Hazard Detection 

• Pipeline can be stalled to inhibit earlier stages and 
allowing later stages to proceed 

• Stage is inhibited by pause signal 

▫ Turn off clock to that stage to prevent registers from 
changing 

 

 

 

• Must deliver something to clear pipeline after the 
paused stage 

▫ Stage 3 must have do something after 1 and 2 paused 

▫ Use nop 
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Stall from ALU-ALU Dependence 
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Data Forwarding: ALU to ALU 

• With forwarding dependent ALU instructions 
can be adjacent not 4 apart (4/1 in dependency 
table 
▫ Dependencies must be detected and data set from 

higher stage directly to X or Y input of ALU 

• Stage S dependency in stage 3 
aluSalu3 ((raS=rb3)X3ZS: 

       (raS=rc3) imm3Y3ZS): 

▫ S = 4 or 5 stages 
▫ rb and rc must be available in stage 3 for hazard 

detection 
• Multiplexers needed on X, Y inputs of ALU so 

either Z4, Z5 can replace X3, or Y3 
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Data Forwarding Hardware 
 • Hazard detection and 

forwarding units added to 
pipeline 

• Multiplexers allow forwarding 
of Z4 or Z5 to either the X or Y 

inputs of ALU 

• rb and rc needed from stage 3 
for detection 
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Restrictions After Forwarding 
1. Branch delay slot 

▫ Instruction after branch is always 
executed no matter if the branch 
succeeds or not 

2. Load delay slot 
▫ Register loaded from memory cannot 

be used as operand in the next 
instruction 

▫ Register loaded from memory cannot 
be used as a branch target for the next 2 
instructions 

3. Branch target 
▫ Results register of alu or ladr 

instruction cannot be used as a branch 
target by next instruction 
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br r4 

add . . . 

 

 

ld r4, 4(r5) 

nop 

neg r6, r4 

 

 

ld r0, 1000 

nop 

nop 

br r0 

 

 

not r0, r1 

nop 

br r0 



Instruction Level Parallelism 
• Full pipeline completes at most one instruction 

every clock cycle 
• Fetch multiple instructions and start several at the 

same time 
▫ Requires multiple function units (e.g. integer, floating 

point) 
▫ Should be no dependence between instructions 

• Superscalar architecture 
▫ Dynamically fetch instructions to fill idle function 

units 
• Very long instruction Word (VLIW) deign 

▫ Statically compile long instruction words with many 
operations in a word to send to different function units 

▫ Word size may be 128, 256, or more bits 
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Dual Issue VLIW Version of SRC 
• 2 instructions per word (2 x 32 = 64 bit word) 
• Two pipelines 

▫ Pipeline 1 can execute memory-access instructions (ld, 
ldr, st, and str) 
 Only one memory access per clock cycle (64-bit word) 

▫ Pipeline 2 can execute shr, shra, shc, br, and brl 
 Expensive barrel shifter replaces memory access in stage 4 
 One branch instruction per word 

▫ Either pipeline can execute other instructions 
 la, lar, add, addi, sub, and, andi, or, ori, 
neg, not, nop, and stop 

• Registers can have 4 reads and 2 writes per cycle 
▫ Must provide more read/write ports or have a “shadow” 

copy 
• No branch delay slot 
• Instruction forwarding wherever possible 
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SRC Dual-Issue Pipeline Structure 
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SRC Dual-Issue Pipeline Hardware 
• Include datapaths and multiplexers (Mi, Ni) for data forwarding  
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Superscalar Architecture 

• Uses multiple pipelines to issue multiple 
instructions per clock cycle 

• Selection of instructions done at run-time by 
hardware 

▫ Instruction buffer used to pre-fetch instructions 

▫ Dependencies between pipeline contents and 
buffer examined to determine which new 
instructions to issue 
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Microprogramming 

• Hardcoded control unit designed to generate control 
signal sequence 
 
 
 
 
 
 
 

• Build a computer to generate signals 
▫ Treat control input/output relationship as a memory 

system 
▫ Read memory to get control signals 
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Step Concrete RTN Control Sequence 

T0 MAPC: CPC+4; PCout, MAin, Inc4, Cin 

T1 MDM[MA]: PCC Read, Cout, PCin, Wait 

T2 IRMD; MDout, Irin 

T3 AR[rb] Grb, Rout, Ain 

T4 CA+R[rc]; Grc, Rout, ADD, Cin 

T5 R[ra]C; Cout, Gra, Rin, End 



Microcode Engine 

• Generating control signals is much simpler than 
a general purpose processor 

▫ Simplest form just reads control signals in order 
from read only memory 

• Control store  

▫ Fast local memory that contains control words 

• Microinstruction 

▫ Control store word contains bit pattern telling 
which control signals are active in a specific step 

• Major issue is to determine order in which 
microinstructions are read 
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Microcoded Control Unit Diagram 
• Microinstruction has branch 

control, branch address, and 
control signal fields 

• Microprogram counter can be 
set from several sources  

▫ Use of 4-1 Mux 

▫ Required for sequencing 

▫ External source could be used 
for exceptions 

• Programmable logic array 
(PLA) serves as lookup table  

▫ Opcode mapped to start 
address  
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Control Store 

• Microinstruction format 
▫ Control signals 

 Binary values for all control 
signals 

▫ Branch control 
 Bits to determine when to use 

branch address  

▫ Branch address 
 Where to jump in control 

store 

• Control store 
▫ Typically faster than main 

memory (on board processor 
chip) 

▫ Usually wide but not many 
words 
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Branch 
Control 

Control Signals 
Branch 
Address 

… PCout PCin MDout IRin … End … 



Hardwired vs Microcoded Control 

• Hardwired control is faster 

▫ Only a few gate delays 

▫ Microcode requires memory fetch 

• Microcode is easier to prototype 

▫ Can reprogram memory chip easily 

• Microcode is more flexible 

▫ Change in instruction sets more accessible  
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Chapter 5 Summary 

• Deals with alternative processor design strategies 
• Pipelining utilizes hardware to increase 

performance 
▫ Want 1 instruction executed per clock cycle 
▫ Data forwarding, branch delay slot, and load delay slot 

help approach target goal 
▫ Data hazards must be detected to guarantee correct 

operation with use of pipeline 

• Multi-issue with instruction-level parallelism in 
another way to improve speed 

• Microprogramming is an easy to design control 
strategy  
▫ Treats control as memory read 
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