
http://www.egr.unlv.edu/~b1morris/cpe300/

CPE300: Digital System

Architecture and Design
Fall 2011

MW 17:30-18:45 CBC C316

Pipelining Hazards, Instruction-Level
Parallelism, Microprogramming

11162011

Outline

• Review SRC Pipeline

• Pipelining Hazards

• Instruction-Level Parallelism

• Microprogramming

2

Pipelining
• Process of issuing a new instruction before the previous

one has completed execution
▫ Favorite technique for RISC processors
▫ Hide latency of instruction execution (multiple clock cycles

for a single instruction)
• Goal to keep equipment busy as much of the time as

possible
▫ Total throughput may be increased by decreasing the

amount of work done at a given stage and increasing the
number of stages (simple tasks to accomplish instruction
execution)

• Consequences for fetch-execute cycle
▫ Previous instruction not guaranteed to be completed before

next operation begins
▫ Results of previous operation not free available at next

operation

3

SRC Pipeline Registers and RTN

• Pipeline registers pass
info from stage to
stage

• RTN specifies output
register values in
terms of stage register
values

4

Pipeline Datapath and Control
• Multiplexer

control stressed
in figure

• Most control
signals sown and
given values

5

Functions of SRC Pipeline Stages
• Stage 1: Instruction fetch

▫ PC incremented or replaced by successful branch in stage 2
• Stage 2: Decode and operand access

▫ Load/store gets operands for address computation
▫ Store gets register value to be stored as 3rd operand
▫ ALU operation gets 2 registers or register and constant

• Stage 3: ALU operations
▫ Calculates effective address or does arithmetic/logic
▫ May pass through link PC or value to be stored in memory

• Stage 4: Data memory access
▫ Passes Z4 to Z5 unchanged for non-memory instructions
▫ Load fills Z5 from memory
▫ Store uses address from Z4 and data from MD4 (no longer

needed)
• Stage 5: Writes result register

▫ Z5 contains value to be written, which can be ALU result,
effective address, PC link value, or fetched data

▫ ra field always specifies result register in SRC

6

Pipeline Hazards

• Deterministic events that are a side-effect of
having instructions in pipeline

▫ Parallel execution

▫ Instruction dependence – instruction depends on
result of previous instruction that is not yet
completely executed

• Two categories of hazards

▫ Data hazards – incorrect use of old and new data

▫ Branch hazards – fetch of wrong instruction on a
change in the PC

7

Branch Hazards

• Branch targets determined in stage 2
▫ Instruction following the branch instruction will enter

the pipeline
▫ Branch delay states following instruction gets executed

without regard for branch action
 Branch delay slot instruction executed before branch is

taken

• Branch prediction
▫ Improve pipeline performance by trying to guess if the

branch will be taken
 Keep information to tell if instruction already seen and

PC values after execution

 Delay only when prediction is wrong

▫ Lots effort in designing prediction schemes

8

Data Hazards

• Incorrect use of old and new data
• Read after write (RAW) hazard

▫ Flow dependence – instruction uses data
produced by a previous one

• Write after read (WAR) hazard
▫ Anti-dependence – instruction writes a new value

over one that is still needed by a previous
instruction

• Write after write (WAW) hazard
▫ Output dependence – two parallel instructions

write the same register and must do it in the order
they were issued

9

Detecting Hazards

• Pairs of instructions must be considered to detect
hazards

• Data is normally available after being written to a
register
▫ Use data forwarding to make it available as early as

stage it was produced
 Stage 3 output for ALU results

 Stage 4 for memory fetch

▫ Receive data as late as stage in which they are used
 Operands normally needed in stage 2

 Stage 2 for branch target

 Stage 3 for ALU operands and address modifier

 Stage 4 for stored register

10

Data Hazards in SRC

• All data memory access occurs in stage 4
meaning all memory reads and writes are
sequential and do not cause hazards

• Registers written in the last stage

▫ WAW and WAR hazards do not occur

▫ Two writes occur in order issued

▫ Write always follows a previously issued read

• Only RAW hazards exist

▫ Values written to register at end of stage 5 may be
needed by a following instruction at beginning of
stage 2

11

Possible Solutions to Register Data Hazard

• Detection
▫ Machine manual could give rules specifying a

dependent instruction must have minimum
number of steps from instruction it depends on

▫ Can be done by compiler but generally too
restrictive

▫ Dependence on following stage can be detected
since operation and operands known at each stage

• Correction (hardware)
▫ Dependent instruction “stalled” to allow those

ahead in the pipeline to complete
▫ Result “forwarded” to an earlier stage without

waiting for a register write

12

RAW, WAW, and WAR Hazards

• RAW hazards due to causality
▫ Cannot use value before it has been produced
▫ Requires data forwarding

• WAW and WAR hazards can only occur when
instructions executed in parallel or out of order
▫ Not possible in SRC
▫ Arise because registers have the same name

 Can be fixed by renaming one of the registers
 Delay the update of a register until appropriate value

produced

13

Instruction Pair Hazard Interaction

• 4/1 indicates the normal/forwarded instruction
separation
▫ 4 instruction separation normally
▫ 1 indicates only a single stage of separation (1 instruction)
▫ Many have 4/1 and gives rise to approximately 1 instruction

per clock cycle

14

alu load ladr brl

6/4 6/5 6/4 6/2

alu 2/3 4/1 4/2 4/1 4/1

load 2/3 4/1 4/2 4/1 4/1

ladr 2/3 4/1 4/2 4/1 4/1

store 2/3 4/1 4/2 4/1 4/1

branch 2/2 4/2 4/3 4/2 4/1

Read from
register file

Stage
normally/latest
needed

Write to register file
Stage data normally/earliest available

Delays Unavoidable by Forwarding

• Loaded values cannot be available to next
instruction even with forwarding
▫ Restrict compiler from putting dependent instruction

in position right after load (next 2 positions for
branch)

• Target register cannot be forwarded to branch from
immediately preceding instruction
▫ Code restricted so branch target is not changed by

instruction preceding branch (previous 2 instructions
if load from memory)

▫ Not to be confused with branch delay slot
 Branch delay – dependence fetch on branch

 This is branch instruction dependent on some instruction
before it

15

Stalling Pipeline on Hazard Detection

• Pipeline can be stalled to inhibit earlier stages and
allowing later stages to proceed

• Stage is inhibited by pause signal

▫ Turn off clock to that stage to prevent registers from
changing

• Must deliver something to clear pipeline after the
paused stage

▫ Stage 3 must have do something after 1 and 2 paused

▫ Use nop

16

Stall from ALU-ALU Dependence

17

Data Forwarding: ALU to ALU

• With forwarding dependent ALU instructions
can be adjacent not 4 apart (4/1 in dependency
table
▫ Dependencies must be detected and data set from

higher stage directly to X or Y input of ALU

• Stage S dependency in stage 3
aluSalu3 ((raS=rb3)X3ZS:

 (raS=rc3) imm3Y3ZS):

▫ S = 4 or 5 stages
▫ rb and rc must be available in stage 3 for hazard

detection
• Multiplexers needed on X, Y inputs of ALU so

either Z4, Z5 can replace X3, or Y3

18

Data Forwarding Hardware
 • Hazard detection and

forwarding units added to
pipeline

• Multiplexers allow forwarding
of Z4 or Z5 to either the X or Y

inputs of ALU

• rb and rc needed from stage 3
for detection

19

Restrictions After Forwarding
1. Branch delay slot

▫ Instruction after branch is always
executed no matter if the branch
succeeds or not

2. Load delay slot
▫ Register loaded from memory cannot

be used as operand in the next
instruction

▫ Register loaded from memory cannot
be used as a branch target for the next 2
instructions

3. Branch target
▫ Results register of alu or ladr

instruction cannot be used as a branch
target by next instruction

20

br r4

add . . .

ld r4, 4(r5)

nop

neg r6, r4

ld r0, 1000

nop

nop

br r0

not r0, r1

nop

br r0

Instruction Level Parallelism
• Full pipeline completes at most one instruction

every clock cycle
• Fetch multiple instructions and start several at the

same time
▫ Requires multiple function units (e.g. integer, floating

point)
▫ Should be no dependence between instructions

• Superscalar architecture
▫ Dynamically fetch instructions to fill idle function

units
• Very long instruction Word (VLIW) deign

▫ Statically compile long instruction words with many
operations in a word to send to different function units

▫ Word size may be 128, 256, or more bits

21

Dual Issue VLIW Version of SRC
• 2 instructions per word (2 x 32 = 64 bit word)
• Two pipelines

▫ Pipeline 1 can execute memory-access instructions (ld,
ldr, st, and str)
 Only one memory access per clock cycle (64-bit word)

▫ Pipeline 2 can execute shr, shra, shc, br, and brl
 Expensive barrel shifter replaces memory access in stage 4
 One branch instruction per word

▫ Either pipeline can execute other instructions
 la, lar, add, addi, sub, and, andi, or, ori,
neg, not, nop, and stop

• Registers can have 4 reads and 2 writes per cycle
▫ Must provide more read/write ports or have a “shadow”

copy
• No branch delay slot
• Instruction forwarding wherever possible

22

SRC Dual-Issue Pipeline Structure

23

SRC Dual-Issue Pipeline Hardware
• Include datapaths and multiplexers (Mi, Ni) for data forwarding

24

Superscalar Architecture

• Uses multiple pipelines to issue multiple
instructions per clock cycle

• Selection of instructions done at run-time by
hardware

▫ Instruction buffer used to pre-fetch instructions

▫ Dependencies between pipeline contents and
buffer examined to determine which new
instructions to issue

25

Microprogramming

• Hardcoded control unit designed to generate control
signal sequence

• Build a computer to generate signals
▫ Treat control input/output relationship as a memory

system
▫ Read memory to get control signals

26

Step Concrete RTN Control Sequence

T0 MAPC: CPC+4; PCout, MAin, Inc4, Cin

T1 MDM[MA]: PCC Read, Cout, PCin, Wait

T2 IRMD; MDout, Irin

T3 AR[rb] Grb, Rout, Ain

T4 CA+R[rc]; Grc, Rout, ADD, Cin

T5 R[ra]C; Cout, Gra, Rin, End

Microcode Engine

• Generating control signals is much simpler than
a general purpose processor

▫ Simplest form just reads control signals in order
from read only memory

• Control store

▫ Fast local memory that contains control words

• Microinstruction

▫ Control store word contains bit pattern telling
which control signals are active in a specific step

• Major issue is to determine order in which
microinstructions are read

27

Microcoded Control Unit Diagram
• Microinstruction has branch

control, branch address, and
control signal fields

• Microprogram counter can be
set from several sources

▫ Use of 4-1 Mux

▫ Required for sequencing

▫ External source could be used
for exceptions

• Programmable logic array
(PLA) serves as lookup table

▫ Opcode mapped to start
address

28

Control Store

• Microinstruction format
▫ Control signals

 Binary values for all control
signals

▫ Branch control
 Bits to determine when to use

branch address

▫ Branch address
 Where to jump in control

store

• Control store
▫ Typically faster than main

memory (on board processor
chip)

▫ Usually wide but not many
words

29

Branch
Control

Control Signals
Branch
Address

… PCout PCin MDout IRin … End …

Hardwired vs Microcoded Control

• Hardwired control is faster

▫ Only a few gate delays

▫ Microcode requires memory fetch

• Microcode is easier to prototype

▫ Can reprogram memory chip easily

• Microcode is more flexible

▫ Change in instruction sets more accessible

30

Chapter 5 Summary

• Deals with alternative processor design strategies
• Pipelining utilizes hardware to increase

performance
▫ Want 1 instruction executed per clock cycle
▫ Data forwarding, branch delay slot, and load delay slot

help approach target goal
▫ Data hazards must be detected to guarantee correct

operation with use of pipeline

• Multi-issue with instruction-level parallelism in
another way to improve speed

• Microprogramming is an easy to design control
strategy
▫ Treats control as memory read

31

