CPE300: Digital System
Architecture and Design

Fall 2011
MW 17:30-18:45 CBC C316

Pipelining Hazards, Instruction-Level

Parallelism, Microprogramming
11162011

http://www.egr.unlv.edu/~bimorris/cpe300/

Outline

- Review SRC Pipeline

- Pipelining Hazards

- Instruction-Level Parallelism
» Microprogramming

3
Pipelining

- Process of issuing a new instruction before the previous
one has completed execution
= Favorite technique for RISC processors
- Hide latency of instruction execution (multiple clock cycles
for a single instruction)
- Goal to keep equipment busy as much of the time as
possible

= Total throughput may be increased by decreasing the
amount of work done at a given stage and increasing the
number of stages (simple tasks to accomplish instruction
execution)

- Consequences for fetch-execute cycle

> Previous instruction not guaranteed to be completed before
next operation begms

= Results of previous operation not free available at next
operation

SRC Pipeline Registers and RTN

—————— memory [e—{FO e —— = == ———

— B - Pipeline registers pass
N info from stage to

Alrb] - "

-Ir2+ oprarbr‘cclc2 | - P:3'2F—— b leb?egfter;;?c] err:]: - — Stage

Y Y A ¥y A ¥ o [
g0, [P i - RTN specifies output
TR S A register values in
s i-cu--tw-—-—-1t- - terms of stage register
values
e
T MU — .

Copyright © 2004 Pearson Prentice Hall, Inc.

Pipeline Datapath and Control

_______ Instructicn e

memory

- Multiplexer

. R o control stressed
Instruction lS { (oranch2 acond} — A1) . .
fetoh in figure

Gt
IR2 Register file [GA o
_____ [oprarrcclc2l {PC2] —|—|a1 R1 392 R2 a3 R3[€E=52 — MOSt ContrOI
' T RS A A" signals sown and
2. A MP2 sond ' Mp2 « (=store — rc)
Decode { store — 1a) 3
and lccz i — Ct Braﬁch Mp3 « (rl v branch — PC2) glven Values
operand 1 logic (dsp v alu — R1)
read Mp4 & (1l = ci):
MD3 MD4' (asp v imm — c2):
____ %———4 X3 1-{¥3] —{MD3} — — [— — @ua—mm 2}
op ra ALU
apn
3. - Decode —» ALU
ALU
operation
————— R4 === —— Z4 — — — 4 MD4 —_—— T ——
addr | Data
op ra memaory
4. ’_. Mps « (—loagd — Z4)
Memory |y Decode load/store [ﬁl Lﬂ‘ (load — mem data)
access
(< |Mps
————— R |———— — — — _————— — — 3 - —
o op L vake
ReQ‘.tSler load v ladr v orl v alu
write

.
Functions of SRC Pipeline Stages

- Stage 1: Instruction fetch

= PC incremented or replaced by successful branch in stage 2
Stage 2: Decode and operand access

= Load/store gets operands for address computation

= Store gets register value to be stored as 3rd operand

= ALU operation gets 2 registers or register and constant
Stage 3: ALU operations

= Calculates effective address or does arithmetic/logic

= May pass through link PC or value to be stored in memory
Stage 4: Data memory access

= Passes 74 to 75 unchanged for non-memory instructions
= Load fills z5 from memory

= Store uses address from z4 and data from MD4 (no longer
needed)

Stage 5: Writes result register

° 75 contains value to be written, which can be ALU result,
effective address, PC link value, or fetched data

= ra field always specifies result register in SRC

. 7
Pipeline Hazards

- Deterministic events that are a side-effect of
having instructions in pipeline
= Parallel execution
= Instruction dependence — instruction depends on
result of previous instruction that is not yet
completely executed
- Two categories of hazards
= Data hazards — incorrect use of old and new data

= Branch hazards — fetch of wrong instruction on a
change in the PC

Branch Hazards

- Branch targets determined in stage 2
= Instruction following the branch instruction will enter
the pipeline
= Branch delay states following instruction gets executed
without regard for branch action
- Branch delay slot instruction executed before branch is
taken
- Branch prediction
= Improve pipeline performance by trying to guess if the
branch will be taken
- Keep information to tell if instruction already seen and
PC values after execution
- Delay only when prediction is wrong

= Lots effort in designing prediction schemes

Data Hazards

» Incorrect use of old and new data
- Read after write (RAW) hazard

= Flow dependence — instruction uses data
produced by a previous one

» Write after read (WAR) hazard

» Anti-dependence — instruction writes a new value
over one that is still needed by a previous
instruction

» Write after write (WAW) hazard

= Qutput dependence — two parallel instructions
write the same register and must do it in the order
they were issued

- o

Detecting Hazards

» Pairs of instructions must be considered to detect
hazards

- Data is normally available after being written to a
register
= Use data forwarding to make it available as early as
stage it was produced
- Stage 3 output for ALU results
- Stage 4 for memory fetch
= Receive data as late as stage in which they are used
- Operands normally needed in stage 2
- Stage 2 for branch target
- Stage 3 for ALU operands and address modifier
- Stage 4 for stored register

- u
Data Hazards in SRC

- All data memory access occurs in stage 4
meaning all memory reads and writes are
sequential and do not cause hazards

- Registers written in the last stage
> WAW and WAR hazards do not occur
= Two writes occur in order issued
= Write always follows a previously issued read

- Only RAW hazards exist

= Values written to register at end of stage 5 may be
needed by a following instruction at beginning of
stage 2

=l

Possible Solutions to Register Data Hazard

» Detection

» Machine manual could give rules specifying a
dependent instruction must have minimum
number of steps from instruction it depends on

= Can be done by compiler but generally too
restrictive

> Dependence on following stage can be detected
since operation and operands known at each stage

» Correction (hardware)

= Dependent instruction “stalled” to allow those

ahead in the pipeline to complete

» Result “forwarded” to an earlier stage without
waiting for a register write

. s

RAW, WAW, and WAR Hazards

RAW WAW

l. add rQ, rl, ro 1. add rO, rl, rd 1. add r2, rl, r0
7. sub r4, r3, ro 2. sub r0, rd, rb& 2. sub rQ, r3, rd

WAR

- RAW hazards due to causality

= Cannot use value before it has been produced
= Requires data forwarding

- WAW and WAR hazards can only occur when
instructions executed in parallel or out of order
= Not possible in SRC

= Arise because registers have the same name
- Can be fixed by renaming one of the registers

- Delay the update of a register until appropriate value
produced

o

Instruction Pair Hazard Interaction

Write to register file
Stage data normally/earliest available
alu load ladr brl
6/4 6/5 6/4 6/2
Read from alu 2/3 4/1 4/2 4/1 4/1
register file load 2/3 4/1 4/2 4/1 4/1
ladr 2/3 4/1 4/2 4/1 4/1
Stage
normally/latest store 2/3 4/1 4/2 4/1 4/1
needed branch| 2/2 4/2 4/3 4/2 4/1

- 4/1 indicates the normal/forwarded instruction
separatlon
s 4 instruction separation normally
= 1indicates only a smgle stage of separatlon (1 1nstruct10n)

" Man¥ have 4 { 1 and gives rise to approximately 1 instruction
per clock cycle

. .|

Delays Unavoidable by Forwarding

» Loaded values cannot be available to next
instruction even with forwarding

= Restrict compiler from putting dependent instruction
in position right after load (next 2 positions for

branch)
- Target register cannot be forwarded to branch from

immediately preceding instruction

= Code restricted so branch target is not changed by
instruction preceding branch (previous 2 instructions
if load from memory)

= Not to be confused with branch delay slot
- Branch delay — dependence fetch on branch

- This is branch instruction dependent on some instruction
before it

|

Stalling Pipeline on Hazard Detection

- Pipeline can be stalled to inhibit earlier stages and
allowing later stages to proceed
- Stage is inhibited by pause signal

= Turn off clock to that stage to prevent registers from
changing o

pause! ——d }— To stage 1
DaLsE2 } To stage 2

- Must deliver something to clear pipeline after the
paused stage
= Stage 3 must have do something after 1 and 2 paused
= Use nop

Stall from ALU-ALU Dependence

Fetch
instruction

Fetch
operands

ALU

operation |

Memory
access

Register
write

Clock cycle 1

Id r8, addr2

Clock cycle 2

Stalled
o

l

Id r8, addr2

Clock cycle 3

Stalled
>

addri, r2, 3
®

l

Id r8, addr2

Clock cycle 4

Stalled
.-

Stalled

addr1,r2,r3
LY

l

Id r8, addr2

Stalled
"

shrr7.r7, #2

addri, 2, r3
k

l

Stalled
T =

Completed

add r"w,‘ ré

addrt, r2, r3

New

N\

Completed

Completed

é

New

Clock cycle 5

add 5, r8. 6

'

addr?

Icd r8,

e d

. 6
Data Forwarding: ALU to ALU

- With forwarding dependent ALU instructions
can be adjacent not 4 apart (4/1 in dependency
table
= Dependencies must be detected and data set from

higher stage directly to X or Y input of ALU

- Stage S dependency in stage 3
aluSAalu3 =2 ((raS=rb3) 2X3€7S:
(raS=rc3) A—=1mm3=2Y3€7S) :
s S = 4 or 5 stages
> rb and rc must be available in stage 3 for hazard
detection
- Multiplexers needed on X, Y inputs of ALU so
either z4, 75 can replace X3, or Y3

Data Forwarding Hardware

Instructior L ——
——————— A D 7y TN :
= gl L - Hazard detection and
. men I forwarding units added to
fetc ﬁ g s pipeline
R2 y Register file 3 3 1
XL (FS2] —|~|at R a2 2 5 6o s -« Multiplexers allow forwarding
2 m o= | NS Mg] of Z4 or 75 to either the X or Y
Decode A .
E0—fFranch inputs of ALU
" Y oYYy SIeMpd y - rb and rc needed from stage 3
TR | (> NS ! L MUS | .
for detection
b, rc
itior »[Decode}
fffff £ T3 == gy | S ||
o > det?gﬁc?r:c:md = 'l s
» forward unit 112 o :"m !‘_
. vl SN
- .h_.;'l _UL t
s Vv >_‘~Llf
IR5 d’ezgcahzir:dar_\d “ [_;Zt&j:‘
orward unit
' .EE_—_»'-E%CI’J'{«!L 5Q writ =

Copyright © 2004 Pearson Prentice Hall, Inc.

o

Restrictions After Forwarding

1. Branch delay slot br r4

> Instruction after branch is always add ...
executed no matter if the branc
succeeds or not 1d r4, 4(r5)
2. Load delay slot nop

= Register loaded from memory cannot neg r6, r4
be used as operand in the next
mstruction

> Register loaded from memory cannot ¢ =% 1%
be used as a branch target for the next 2 noi

instructions br r0
3. Branch target

= Results register of alu or ladr
instruction cannot be used as a branch not r0, rl

target by next instruction nop
br r0

i

Instruction Level Parallelism

- Full pl}l)ehne completes at most one instruction
every clock cycle

- Fetch multiple instructions and start several at the
same time
= Requires multiple function units (e.g. integer, floating

point)

= Should be no dependence between instructions

- Superscalar architecture

= Dynamically fetch instructions to fill idle function
units

o Very long instruction Word (VLIW) deign

= Statically compile long instruction words with many
operations in a word to send to different function units

= Word size may be 128, 256, or more bits

2
Dual Issue VLIW Version of SRC

- 2 instructions per word (2 x 32 = 64 bit word)
- Two pipelines
= Pipeline 1 can execute memory-access instructions (1d,
1ldr, st,and str)
- Only one memory access per clock cycle (64-bit word)
> Pipeline 2 can execute shr, shra, shc, br,and brl
- Expensive barrel shifter replaces memory access in stage 4
* One branch instruction per word

= Either pipeline can execute other instructions
- la, lar, add, addi, sub, and, andi, or, ori,
neg, not, nop, and stop

- Registers can have 4 reads and 2 writes per cycle

> Must provide more read/write ports or have a “shadow”
copy

- No branch delay slot
- Instruction forwarding wherever possible

SRC Dual-Issue Pipeline Structure

Stage :
— Pipeline 1 Instruction fetch Pipeline 2
1 Instruction 1 | Instruction 2
I I
> Decode and Decode, operand
operand read read, and branch
Y Y
3 ALU operation ALU operation
Y Y
4 Memory access Shift operations
Y Y
5 Register write Register write
Instructions executed
Pipeline 1 instructions in either pipeline Pipeline 2 instructions
Id, Idr, st, str la, lar, add, addi, sub, srr, shra, shl, shc,
neg, and, andi, or, ori, br, brl

not, nop, stop
Copyright © 2004 Pearson Prentice Hall, Inc.

SRC Dual-Issue Pipeline Hardware

- Include datapaths and multiplexers (Mi, Ni) for data forwarding

Instruction REm— PC |
fetch
| I
¥ ¥
Decode and operand fetch
Decode and operand fetch PC update
op/muxira] P1 | P2 | P3 op/muxfral Q1 | Q2 |
A
| 1 2 A 1
Il 11 L1l A J | lI
[M1 | M2 | m3 | [N1 | N2 |
Y Y Y ¥ Y ¥
ALU operation ALU operation
op/muxfral | BusA| | A1 op/muxfral [BusC| | C1 |
e :
| | |
Lma | [wvs | [na | ns |
¥ Y Y ¥ ¥
Memory access Shifter
opfra | |[BusB | op/fra | | BusD |
Y Y Y
Result write Result write

=l
Superscalar Architecture

- Uses multiple pipelines to issue multiple
instructions per clock cycle

- Selection of instructions done at run-time by
hardware

= Instruction buffer used to pre-fetch instructions

» Dependencies between pipeline contents and
buffer examined to determine which new
instructions to 1ssue

|

Microprogramming

- Hardcoded control unit designed to generate control
signal sequence

Concrete RTN Control Sequence

TO MA&PC: C<SPC+4; PCouer MA;,, Incé4, C,|
T1 MDEMI[MA] : PCEC Read, C.,., PC.,,, Wait
T2 IR<MD; MDgyer ITig

T3 A€R([rb] Grb, Ry,.r Ai,

T4 C&EA+R[rc]; Grc, R.,., ADD, C,,
T5 R[ra] €C; Courr Gra, R,,, End

- Build a computer to generate signals

= Treat control input/output relationship as a memory
system

= Read memory to get control signals

. =
Microcode Engine

- Generating control signals is much simpler than
a general purpose processor

» Simplest form just reads control signals in order
from read only memory

- Control store
» Fast local memory that contains control words
» Microinstruction

= Control store word contains bit pattern telling
which control signals are active in a specific step

- Major issue is to determine order in which
microinstructions are read

Microcoded Control Unit Diagram

Ck CCs Other @ T —————-

l l l l l IR | Opcode | - Microinstruction has branch
Y control, branch address, and
PLA : :
Sequencer [, | (computes | _ . control signal fields
2 | start addr) Awera « Micropr t b
] source program counter can be
A J 1 i” ¢ T set from several sources
Increment ! > 4-1 Mux = Use of 4-1 Mux
4" - Required for sequencing
" pPC > External source could be used
: Y for exceptions
- Programmable logic array
Control
§ Stora £ (PLA) serves as lookup table
> Opcode mapped to start
{r address
uBranch iR

sontiol__ | VY Yy

Control signals address
PC etc.

out’
Copyright © 2004 Pearson Prentice Hall, Inc.

Control Store

Branch . Branch

IR,

in

End

» Microinstruction format

= Control signals

* Binary values for all control
signals

= Branch control

- Bits to determine when to use
branch address

= Branch address

* Where to jump in control

store

- Control store
= Typically faster than main

memory (on board processor

PCout Pcin MDout
0
uCode for instruction fetch
Al uCode for add
Microaddress a2
nCode for br
a3
pnCode for shr
21
< m bits wide >
k pbranch ¢ control n branch
control bits signals address bits

Copyright © 2004 Pearson Prentice Hall, Inc.

chip)

= Usually wide but not many
words

It
Hardwired vs Microcoded Control

- Hardwired control is faster
> Only a few gate delays
» Microcode requires memory fetch
- Microcode is easier to prototype
= Can reprogram memory chip easily
- Microcode is more flexible
= Change in instruction sets more accessible

. .
Chapter 5 Summary

- Deals with alternative processor design strategies
- Pipelining utilizes hardware to increase
performance
= Want 1 instruction executed per clock cycle

= Data forwarding, branch delay slot, and load delay slot
help approach target goal

= Data hazards must be detected to guarantee correct
operation with use of pipeline

- Multi-issue with instruction-level parallelism in
another way to improve speed

- Microprogramming is an easy to design control
strategy
= Treats control as memory read

