CPE300: Digital System
Architecture and Design

Fall 2011
MW 17:30-18:45 CBC C316

Pipelining
11142011

http://www.egr.unlv.edu/~bimorris/cpe300/

Outline

- Review I/0

- Chapter 5 Overview
- Pipelining

- Pipelining Hazards

. 3

Review of |/0

- I1/0 subsystems appear to programmer as a part of memory
(memory—mappe(f 1/0)
= Special characteristics of data location, transfer, and
synchronization make it different
- Combination of hardware and software protocols guarantee
correct data transfer
= Programmed I/O — uses an instruction to begin transfer and polls
= Interrupt-driven I/O — uses exception handling to service I/0O
> DMA - interface allows device to control memory bus like the
processor
- Data within processor and outside in devices have different
characteristics that may require data format change
(serial /parallel)
- I1/0 is more error prone than CPU hence requires error
etection and/or correction

. 4
Chapter 5 Overview

1. Principles of pipelining
= SRC pipeline design
2. Pipeline hazards
3. Instruction-level parallelism
= Superscalar processors
> Very long instruction word (VLIW) machines
4. Microprogramming
= Control store and micro-branching
= Horizontal and vertical microprogramming

5
Pipelining

- Process of issuing a new instruction before the previous
one has completed execution
= Favorite technique for RISC processors
- Hide latency of instruction execution (multiple clock cycles
for a single instruction)
- Goal to keep equipment busy as much of the time as
possible

= Total throughput may be increased by decreasing the
amount of work done at a given stage and increasing the
number of stages (simple tasks to accomplish instruction
execution)

- Consequences for fetch-execute cycle

> Previous instruction not guaranteed to be completed before
next operation begms

= Results of previous operation not free available at next
operation

Industrial Manufacturing Pipeline

nstruction

i it L | Execution Order

Fetct Select
o
nsiru | part 5
ki Y
Fetct Drill PY
operands ‘ part 4
Y l
ALU Cut e
operation ‘ part 3
Memory Polish P
access part 2
, l
Register Package P 1
write part

add r4 3. 12 Make end plate Only hlghhghted Step is
(a) Without pipelining/assembly line . .
active at a time

\
Il

Memory Bottom
ACCESS plate

Center
plate

Part
manufacture

Select

part

Y

Drill
part

l

Cut
part

l

Polish
part

l

Package
part

(b) With pipelining/assembly line

|

Industrial Manufacturing Pipeline

Execution Order

- 5 — fetch instruction
from memory

» 4 —operands (r4,
addrl) extracted

- 3 — operands fetched
and added in ALU

- 2 —idle, no memory
access is required

- 1 — results written to r3

Only highlighted step is

active at a time

. |
Pipeline Stages

- 5 pipeline stages
1. Fetch instruction

2. Fetch operands
3. ALU operation
4. Memory access
5. Register write
- 5 Instructions are executing
1. shr r3, r3, 2 ;store result in r3
2. sub r2, r5, rl ;idle, no mem. access req.
3. add r4, r3, r2 ;adding in ALU
4. st r4, addrl ;accessing r4 in addrl
5. 1d r2, addr2 ;instruction being fetched

Pipelining Instruction Processing

- All 5 instruction in execution at the same time
- Assume instructions move one stage per clock tick
(exceptions exist)
= Every instruction takes 5 clock ticks to complete
= Instruction completes every clock tick
- Pipeline stages shown top to bottom in order
traversed by one instruction
= Instructions listed in order they are fetched (opposite
pipeline direction)
- Performance issues
= Latency — time to process individual instruction
» Bandwidth — instructions/second
= Trade-off: higher latency for improved bandwidth

- o

Inter-Instruction Dependence

- Execution of some instructions may depend on
completion of other instructions in pipeline
o 0x100 add r0, r2, r4
o 0x104 sub r3, r0, rl
- “Stall” pipeline
= Stop execution of early stages while later ones
complete processing
- “Forward” data

= Detect register dependencies and make register value
available without waiting for register write

- Restrict instruction set usage for memory access
(harder to deal with than registers)
= Branch delay slot
= Load delay slot

- ul
Branch and Load Delay

- Instructions not changed, just how the operate
together

- Branch delay
o brz r2, r3
s add r6, r7, r8 ;instruction always executed
s st r6, addrl ;only done if r3#0

- Load delay
o 1d r2, addr
s add r5, rl, r2 ;usesoldvalue of r2
o shr rl, rl, 4
= sub r6, r8, r2 ;usesr2valloaded from addr

=l

Characteristics of Pipelined Processor Design

- Main memory must operate in single cycle
= Use fast (expensive) memory
= Usually accomplished with cache (Chapter 7)
- Instruction and data memory must appear separate

= Harvard architecture has separate instruction and data
memories

= Usually done with separate caches
> Need to fetch at same time as load/store
- Few buses are used
= Typical connections are point to point
= Some few-way multiplexors are used
- Data is latched in pipeline registers (temporary
register storage) at each pipeline stage
- ALU operations take 1 clock cycle
= Specifically shift (barrel shifter)

. |
Pipelining Desigh Technique

- All instructions must fit into common pipeline
stage structure

1. Categorize instructions into classes
= Register transfer characteristics/behavior
= Data movement, ALU, Branch
2. Map instruction classes to pipeline datapath
3. Add control signals to manage instruction flow
4. Design hardware to handle data dependencies

. |
SRC Adaption for Pipelined Execution

- 5 Stage pipeline
1. Instruction fetch
2. Decode and operand access
3. ALU operations
4. Data memory access
5. Register write
- Load/store, ALU, and branch instructions
organized to fit this pattern

5
5- Stage ALU Design

*add r4, r2, 12

1. Extract instruction,

gt increment PC

o ,Z vz 4] .

2. Second ALU operand is
%é either a register or c2 field

= Notice control signal Mp4

3. Opcode must be available in
stage 3 to notify ALU of
function

4. No memory operation
5. Write result to register file

|

Pipeline Control Signals

branch := br v brl :
cond := (IR2¢2..0)=1) v ((IR2(2..1)=1) A (IR2(0)®R[rc]=0)) v
((TR2(2..1)=2)A(-IR2(0)®R[rc|(31))):

sh :=shr v shra v shl v shc: Shifts

alu := add v addi v sub v neg v and v andi v or v ori v not v sh :

imm := addi v andi v ori v (sh A (IR{(4..0) #0)): Immediate operand

load :=Id v Idr: Load instructions

ladr :=la v lar: Load address instructions

store := st v str: Store instructions

I-s := load v ladr v store : Memory address instructions

regwrite := load v ladr v brl v alu: Instructions that write to the register file
dsp:=Ildvstvla: Instructions that use disp addressing
rl:=Idr v strvlar: Instructions that use rel addressing

- The logic equations are based on the instruction
in the stage where they are used

- Digit appended to logic signal name to specify
stage it is computed

» regwriteb is true when the opcode in stage 5 is
loado v ladrovbrlbvalubd

- All signals are determined from op5

5-Stage Load/Store Design

Id, Idr, la, and lar st and str

e 1d r2, 16(r4) st r3, (rb)

1.

ALU computes
effective address
4. Read or write

Result register
written only for

load

71

5-Stage Branch Design

————— mm i1 ebr r3l
~vnitortizen 2. New PC value known in
e = stage 2 not in stage 1

3. None
None

Only branch and link does a
register write

o B

4CCess

SRC Pipeline Registers and RTN

—————— memory [e—{FO e —— = == ———

— B - Pipeline registers pass
N info from stage to

Alrb] - "

-Ir2+ oprarbr‘cclc2 | - P:3'2F—— b leb?egfter;;?c] err:]: - — Stage

Y Y A ¥y A ¥ o [
g0, [P i - RTN specifies output
TR S A register values in
s i-cu--tw-—-—-1t- - terms of stage register
values
e
T MU — .

Copyright © 2004 Pearson Prentice Hall, Inc.

. |
Global State for Pipelined SRC

- Pipeline registers have state information solely
for the corresponding stage

- Global state does not belong to any pipeline
stage — shared by all
= PC
- Accessed in stage 1 and stage 2 on branch
= General registers
s Instruction memory
- Accessed in stage 1
= Data memory
- Accessed in stage 4

i

Access Restrictions for Global State

- Separate instruction and data memories needed
= Two memory accesses can occur simultaneously
» Load/store accesses data memory in stage 4
= Stage 1 accesses an instruction

- Registers read and write at same time
= 2 operands may be needed in stage 2
» Register could be written as result in stage 5

- PC increment at stage 1 must be overridden by a
successful branch in stage 2

Pipeline Datapath and Control

_______ Instructicn e

memory

- Multiplexer

. R o control stressed
Instruction lS { (oranch2 acond} — A1) . .
fetoh in figure

Gt
IR2 Register file [GA o
_____ [oprarrcclc2l {PC2] —|—|a1 R1 392 R2 a3 R3[€E=52 — MOSt ContrOI
' T RS A A" signals sown and
2. A MP2 sond ' Mp2 « (=store — rc)
Decode { store — 1a) 3
and lccz i — Ct Braﬁch Mp3 « (rl v branch — PC2) glven Values
operand 1 logic (dsp v alu — R1)
read Mp4 & (1l = ci):
MD3 MD4' (asp v imm — c2):
____ %———4 X3 1-{¥3] —{MD3} — — [— — @ua—mm 2}
op ra ALU
apn
3. - Decode —» ALU
ALU
operation
————— R4 === —— Z4 — — — 4 MD4 —_—— T ——
addr | Data
op ra memaory
4. ’_. Mps « (—loagd — Z4)
Memory |y Decode load/store [ﬁl Lﬂ‘ (load — mem data)
access
(< |Mps
————— R |———— — — — _————— — — 3 - —
o op L vake
ReQ‘.tSler load v ladr v orl v alu
write

. =

Example Pipeline Propogation

100 add r4, r6, r8 ;RI4]€R[6]+R[8]

104 1d r7, 128 (r5) sR[7]€M[R[5]+128]

108 Dbrl r9, rll, 001 ;PCER[11]: R[9]€PC

112 str rl2, 32 M[PC+32] €R[12]

512 sub ;next instruction

« Assume R[11] = 512 when brl instruction
executed

*R[6]=4 and R[8]=5
e R[5]=160 for 14
« R[12]=23 for str

Cycle 1: add enters Pipeline

100 add rd, ro, r8

_______ Instruction<_p0@_‘.;; N

memory

» PC incremented to 104

Copyright © 2004 Pearson Prentice Hall, Inc.

Cycle 2: ld Enters Pipeline

‘ 104 1d r7, 128 (rb)
Eoi e

i y
Instruction Inc4
fetch
104; id r7,r5.| 128 _—

-
¢ 4® 5 @R« add operands are fetched in

f?(-,.lijifi:j- | E ; ’ N 4| Stage 2

;';_'__',“‘:]1[1 41— *f:kf_-:r:-m;h

_ —A A.‘l y g oo

ead on %
sl 1) = Y

77777 [RE +———— x3]{ Y3 |—{MDZ}+——H-+—-

[
n ! ;.. l) v '

R :" » b_.y ALL)

erd »

Copyright © 2004 Pearson Prentice Hall, Inc.

Cycle 3: brl Enters Pipeline

brl 19,111, X

Incad

lnstruction‘pd 108 |<—H:
memory
’ <€ Mpt
‘\
Y

5 g s,

| e
o T 0?_% O -{—=Branch
j) . A)i
wag d 7 13 » [7\ < _u.:v
R3
: x3a[4 Jva[5 1 — { ™03
i qcic
2 Decode »> ALU
Al
peration

m—+ '.f:;,/ 4_ + ‘

Copyright © 2004 Pearson Prentice Hall, Inc.

."' I‘;' 31
* PC2 al R1 a2 R2 a3 R3 :;
128} {7081 5 16 >

108 brl r9,
104 1d r7,

rll, 001
128 (rb5)
100 add r4d, ro, r8

- add performs arithmetic in
stage 3

Cycle 4: str Enters Pipeline

. B 112 str rlz, 32
——————— '”rf]g;%*f;”*fjc{ﬂ_z_]eu P ——————— —— — !
<« Mp1 108 brl r9, rll, 001
A

y
l Inc4 P 10
g 104 1d r7, 128 (r5
atel ey = —J - ’ ()
BN .y) W L > 8 100 add r4, r6, r8
% 13 (b o ¢ o RS LA
r,(;-,:]” $: * — +_ 0 .T.‘;—:Bran.ch . . .
Tt | L LY ovyy T g - addisidle in stage 4
e TR o G2 [y % Ty
- x3[6 Iva[18) — {Woa} — | « Success of br1 changes
; Becodel o] AL program counter to 512
|
Id

arl/etnre 9
Memory I Decode| "= P LI T o
5} 7

Copyright © 2004 Pearson Prentice Hall, Inc.

Cycle 5: sub Enters Pipeline

512 sub

Instr;}ct:on «rC| 512 |56
ecilizd @4 Mp 1 112 str rl2, 32
r-:f:?"l}'lzi‘:.ll cn Inc4 :y 1 O 8 br l r 9 V4 r 1 1 V4 O O 1
R2 Is}r G \r Z | EYEPCZ al A ”2 ;3 z 104 1d r7/ 128 (rbd)
Jade l I I 12 A T A
nd 3 0) !
pe v v 4 ? 17
»K\I <g\l< :
—————— (B 9] — — — —xa[TiZ Jva[0K | — T B add completes In stage 5
‘—’—»Decode 2 XAy » sub is fetched from location
operation | | f 512 after the successful branch

Copyrnght © 2004 Pearson Prentice Hall, Inc.

|

Functions of SRC Pipeline Registers

- Registers between stages 1 and 2

= IR2 holds the full instruction including any register fields and
constants

> PC2 holds the incremented PC from instruction fetch
- Registers between stages 2 and 3
= IR3 holds opcode and ra (needed in stage 5)
= X3 holds PC or a register value (for link or first ALU operand)
> Y3 holds c1, c2, or register value for second ALU operand
= MD3 is used for a register value to be stored in memory
- Registers between stages 3 and 4
> IR4 holds opcode and ra
= 74 has memory address or result register value
= MD4 has value to be stored in data memory
- Registers between stages 4 and 5
= IR5 holds opcode and destination registers number ra
= 75 has value to be stored in destination register
- ALU result, PC link value, or fetched data

.
Functions of SRC Pipeline Stages

Stage 1: fetches instruction

> PC incremented or replaced by successful branch in stage 2
Stage 2: decodes instruction and gets operands

> Load/store gets operands for address computation

= Store gets register value to be stored as 3rd operand

= ALU operation gets 2 registers or register and constant
Stage 3: performs ALU operation

= Calculates effective address or does arithmetic/logic

= May pass through link PC or value to be stored in memory
Stage 4: accesses data memory

= Passes 74 to z5 unchanged for non-memory instructions

= Load fills z5 from memory

» Store uses address from 74 and data from MD4 (no longer needed)
Stage 5: writes result register

= 75 contains value to be written, which can be ALU result, effective
address, PC link value, or fetched data

= ra field always specifies result register in SRC

.
Pipeline Hazards

- Deterministic events that are a side-effect of
having instructions in pipeline
= Parallel execution
= Instruction dependence — instruction depends on
result of previous instruction that is not yet
completely executed
- Two categories of hazards
= Data hazards — incorrect use of old and new data

= Branch hazards — fetch of wrong instruction on a
change in the PC

-

Branch Hazards

- Branch targets determined in stage 2
= Instruction following the branch instruction will enter
the pipeline
= Branch delay states following instruction gets executed
without regard for branch action
- Branch delay slot instruction executed before branch is
taken
- Branch prediction
= Improve pipeline performance by trying to guess if the
branch will be taken
- Keep information to tell if instruction already seen and
PC values after execution
- Delay only when prediction is wrong

= Lots effort in designing prediction schemes

- »

Data Hazards

» Incorrect use of old and new data
- Read after write (RAW) hazard

= Flow dependence — instruction uses data
produced by a previous one

» Write after read (WAR) hazard

» Anti-dependence — instruction writes a new value
over one that is still needed by a previous
instruction

» Write after write (WAW) hazard

= Qutput dependence — two parallel instructions
write the same register and must do it in the order
they were issued

-

Detecting Hazards

» Pairs of instructions must be considered to detect
hazards

- Data is normally available after being written to a
register
= Use data forwarding to make it available as early as
stage it was produced
- Stage 3 output for ALU results
- Stage 4 for memory fetch
= Receive data as late as stage in which they are used
- Operands normally needed in stage 2
- Stage 2 for branch target
- Stage 3 for ALU operands and address modifier
- Stage 4 for stored register

.. |
Data Hazards in SRC

- All data memory access occurs in stage 4
meaning all memory reads and writes are
sequential and do not cause hazards

- Registers written in the last stage
> WAW and WAR hazards do not occur
= Two writes occur in order issued
= Write always follows a previously issued read

- Only RAW hazards exist

= Values written to register at end of stage 5 may be
needed by a following instruction at beginning of
stage 2

-

Possible Solutions to Register Data Hazard

» Detection

» Machine manual could give rules specifying a
dependent instruction must have minimum
number of steps from instruction it depends on

= Can be done by compiler but generally too
restrictive

> Dependence on following stage can be detected
since operation and operands known at each stage

» Correction (hardware)

= Dependent instruction “stalled” to allow those

ahead in the pipeline to complete

» Result “forwarded” to an earlier stage without
waiting for a register write

- ¥

RAW, WAW, and WAR Hazards

RAW WAW

l. add rQ, rl, ro 1. add rO, rl, rd 1. add r2, rl, r0
7. sub r4, r3, ro 2. sub r0, rd, rb& 2. sub rQ, r3, rd

WAR

- RAW hazards due to causality

= Cannot use value before it has been produced
= Requires data forwarding

- WAW and WAR hazards can only occur when
instructions executed in parallel or out of order
= Not possible in SRC

= Arise because registers have the same name
- Can be fixed by renaming one of the registers

- Delay the update of a register until appropriate value
produced

|

Instruction Pair Hazard Interaction

Write to register file
Stage data normally/earliest available
alu load ladr brl
6/4 6/5 6/4 6/2
Read from alu 2/3 4/1 4/2 4/1 4/1
register file load 2/3 4/1 4/2 4/1 4/1
ladr 2/3 4/1 4/2 4/1 4/1
Stage
normally/latest store 2/3 4/1 4/2 4/1 4/1
needed branch| 2/2 4/2 4/3 4/2 4/1

- 4/1 indicates the normal/forwarded instruction
separatlon
s 4 instruction separation normally
= 1indicates only a smgle stage of separatlon (1 1nstruct10n)

" Man¥ have 4 { 1 and gives rise to approximately 1 instruction
per clock cycle

. »

Delays Unavoidable by Forwarding

» Loaded values cannot be available to next
instruction even with forwarding

= Restrict compiler from putting dependent instruction
in position right after load (next 2 positions for

branch)
- Target register cannot be forwarded to branch from

immediately preceding instruction

= Code restricted so branch target is not changed by
instruction preceding branch (previous 2 instructions
if load from memory)

= Not to be confused with branch delay slot
- Branch delay — dependence fetch on branch

- This is branch instruction dependent on some instruction
before it

. |
Stalling Pipeline on Hazard Detection

- Pipeline can be stalled to inhibit earlier stages and
allowing later stages to proceed
- Stage is inhibited by pause signal

= Turn off clock to that stage to prevent registers from
changing o

pause! ——d }— To stage 1
DaLsE2 } To stage 2

- Must deliver something to clear pipeline after the
paused stage
= Stage 3 must have do something after 1 and 2 paused
= Use nop

Stall from ALU-ALU Dependence

Fetch
instruction

Fetch
operands

ALU

operation |

Memory
access

Register
write

Clock cycle 1

Id r8, addr2

Clock cycle 2

Stalled
o

l

Id r8, addr2

Clock cycle 3

Stalled
>

addri, r2, 3
®

l

Id r8, addr2

Clock cycle 4

Stalled
.-

Stalled

addr1,r2,r3
LY

l

Id r8, addr2

Stalled
"

shrr7.r7, #2

addri, 2, r3
k

l

Stalled
T =

Completed

add r"w,‘ ré

addrt, r2, r3

New

N\

Completed

Completed

é

New

Clock cycle 5

add 5, r8. 6

'

addr?

Icd r8,

e d

Data Forwarding Hardware

Instructior L ——
——————— A D 7y TN :
= gl L - Hazard detection and
. men I forwarding units added to
fetc ﬁ g s pipeline
R2 y Register file 3 3 1
XL (FS2] —|~|at R a2 2 5 6o s -« Multiplexers allow forwarding
2 m o= | NS Mg] of Z4 or 75 to either the X or Y
Decode A .
E0—fFranch inputs of ALU
" Y oYYy SIeMpd y - rb and rc needed from stage 3
TR | (> NS ! L MUS | .
for detection
b, rc
itior »[Decode}
fffff £ T3 == gy | S ||
o > det?gﬁc?r:c:md = 'l s
» forward unit 112 o :"m !‘_
. vl SN
- .h_.;'l _UL t
s Vv >_‘~Llf
IR5 d’ezgcahzir:dar_\d “ [_;Zt&j:‘
orward unit
' .EE_—_»'-E%CI’J'{«!L 5Q writ =

Copyright © 2004 Pearson Prentice Hall, Inc.

- s

Restrictions After Forwarding

1. Branch delay slot br r4

> Instruction after branch is always add ...
executed no matter if the branc
succeeds or not 1d r4, 4(r5)
2. Load delay slot nop

= Register loaded from memory cannot neg r6, r4
be used as operand in the next
mstruction

> Register loaded from memory cannot ¢ =% 1%
be used as a branch target for the next 2 noi

instructions br r0
3. Branch target

= Results register of alu or ladr
instruction cannot be used as a branch not r0, rl

target by next instruction nop
br r0

