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Outline

- Review Datapath/Control

- 2- and 3-Bus SRC Processor Design
- Machine Reset

- Machine Exceptions
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Register Transfer Descriptions

» Abstract RTN

= Defines “what” not the “how” (Chapter 2)

- Overall effect of instructions on programmer-visible
registers

= Implementation independent
- Registers and operations

e Concrete RTN

= Detailed register transfer steps in datapath to
produce overall effect
- Dependent on implementation details

= Steps correspond to processor clock pulses



1-Bus SRC Microarchitecture

- 5 classic components of computer
= Memory, Input, Output
= CPU - Control and Datapath
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More Complete View of 1-Bus SRC Design

- Add control signals and gate-level logic

o Figure 4.4 A
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Control Sequences

- Register transfers are the concrete RTN
- Control sequence are the control signals that

cause the RT
TO MA€PC: C€PC+4; PC_,., MA, , Inc4, C,.
T1 MDEM[MA] : PC€C Read, C_,., PC,,, Wait
T2 TR€EMD MD_.., IR.,
T3 instruction execution

Wait prevents control sequence from advancing to step T2
until memory asserts Done
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Control Steps, Control Signals, and Timing

- Order control signals are written is irrelevant for
a given time step
= Step To:
* (Inc4, Ci, PCu,
- Timing distinction is made between gates and
strobes
= Gates early, strobes late in clock cycle
- Memory read should start as early as possible to
reduce wait time
- MA must have correct value before being used for

aread

MA, ) =(PC MA Inc4, C,.)

out/ in/



Clocking the Datapath

- Register transfers result

. . Source Bus Logic Destination
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Signal Timing on the Datapath

- Several delays occur in getting data from R1 to
R2
> Gate delay through the 3-state bus driver—t,
> Worst case propagation delay on bus—t,,,
= Delay through any logic, such as ALU—t___,
= Set up time for data to affect state of R2—t_,

- Data can be strobed into R2 after this time

tszalid = tg + tbp + tcomb + 1:su

- Diagram shows strobe signal in the form for a

latch. It must be high for a minimum time—t,,

- There is a hold time, t,, for data after strobe ends
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Signal Timing and Minimum Clock Cycle

- A total latch propagation delay is the sum
Ty=t, +t,+1
= All above times are specified for latch
s 1, may be very small or zero
- The minimum clock period is determined by
finding longest path from flip-flop output to flip-
flop input
= This is usually a path through the ALU
= Conditional signals add a little gate delay
> Minimum clock period is

tmin = tg + tbp + tcomb + tl
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Consequences of Flip-Flop Type

Flip-flop types (Appendix A.12)

= Level-triggered (latch) — state can change while clock is high

" Ed%e—trig%ered — state changes only on a clock transition (high-
to-low or low-to-high)

= Master-slave — breaks feedback from output/input of register
allowing on a single state change per clock cycle

During the high part of a strobe a latch changes its output

- If this output can affect its input, an error can occur (feeback)

This can influence even the kind of concrete RTs that can be

written for a data path

If the C register is implemented with latches, then

C« C+ MD; 1isnotlegal
If the C register is implemented with master-slave or edge
triggered flip-flops, it is OK
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The Control Unit

Brain of a machine

Datapath implementation led to control sequences to
implement instructions

Control unit will generate the control sequences

= Logic to enable control signal

= Timing of signals

The control unit’s job is to generate the control signals in
the proper sequence

Things the control signals depend on

= The time step Ti

> The instruction op code (for steps other than To, T1, T2)

= Some few datapath signals like CON, n=0, etc.

» Some external signals: reset, interrupt, etc. (to be covered)
The components of the control unit are: a time state
generator, instruction decoder, and combinational logic
to generate control signals



Detailed Control Unit

Clock and control sequence I Instruction decode I

Master Strt Wait Done :
clock OpCode IR Other signals from
¢ l i l the data path
I |—-> Decoder
Clocking logic Exception signals
Enable
Step generator
Y <l
Countln ch> Control EHhtEET - Interrupts
2 ontro i
e R sora  [_[end e
4 decoder -
T(.) encoder W signals

T

Load | | Reset

le
i
O
Control signals for datapath




Control Sighal Encoder Logic

- Write equation describing control signal

> Find all occurrences of control signal in entire set
of control sequences

= Equation implemented by digital logic gates

PC.ur MA,,, Inc4, C,, Grb, Rguer A, Grb, Rgur Ai,
T1 Read, C_,., PC;,, Wait T4 Crae), R e ADIBL, € T4 c2.,,r ADD, C,,
T2 MD_,., IR, T5 Coutr Gra, Ry,, End T5 Coutr Gra, Ry,, End

clout, Ld Grb, BA_ ., A;, Grc, Rg,., CON,,

T4 n=0-> (Grc, R, Ld) T4 c2,,.r ADD, C;, T4 Grb, Ruis
T5 Grb, R,,., C=B, C,, T5 Couer MA,. CONZAEC, ;i
T6 n#0-> (C,,., SHR, C,,, Decr, Goto6) T6 Gra, Rg,., MD;,, Write
T7 Courr Gra, R,,, End T7 Wait, End



Control Signal Examples
mm

PC MA, , Inc4, C;, Grb, Ry,., A, Grb, R A,

out/’ out/’ in
T1 Read, C.,., PC;,, Wait T4 Grc, Ry,, ADD, C;, T4 c2.,..s ADD, C;,
T2 MDouer IR;, T5 CRry G E RN Fi ¢l T5 GG iy AN RE NPT 6]

SHR Control Sequence ST Control Sequence BR Control Sequence

clout, Ld Grb, BA_ ., A, Grc, Rg,er CON;,
T4 n=0-> (Grc, R, Ld) T4 c2,,.r ADD, C;, T4 Grb, Reuis
T5 Grb, R,,., C=B, C,, T5 Couer MA,. CON>PCyn, End
T6 n#0-> (C_,., SHR, C,,, Decr, Gotob6) T6 Gra, Rg,., MD;,, Write
T7 Couer Gra, R;,, End T7 Wait, End

= Gra = T5-(add + addi) + To6-st +T7 shr +

- Use of datapath conditions
= Grc = T4 -add + T4 - (n=0) ‘shr +

T1— add T5 —___—:}7 5
Cout addi Gra
=T
add — Id —




Branching in the Control Unit

Mck Enable - Tri-state gates allow 6 to be
| | applied to counter input
¢ ¢ Step generator - Reset will synchronously
Y reset counter to step To
= s » 10« Mck is the master clock
Countln 2 [ Contol o oscillator signal
= L5 step
4 < o decoder > T
L A >
0110 Load
Reset
Gotob

Copyright © 2004 Pearson Prentice Hall, Inc.
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Clocking Logic

- Generates Run signal

- Generate synchronized done signal SDone
» Generates R, W from Read, Write control
- Generates Enable which controls counter

= Run fG) )
Strt (E) J Q «— Done (E)
—> =g
Stop (C) K Q
) _ SDone (G)
Mck (1) D Q
@ o
i> Wait (C) %D_} Enable (G)
Read (C) J Q R(G)
D
- K To memory system ————»
Legend
Write (C) J W (G) E - External
N G - Generated
— C — Control signal
1K_Q | — Internal
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Completed 1-Bus Design

- High level architecture block diagram

» Concrete RTN steps

- Hardware design of registers and data path logic
- Revision of concrete RTN steps where needed

- Control sequences

- Register clocking decisions

- Logic equations for control signals

- Time step generator design

» Clock run, stop, and synchronization logic



. |
Alternate Architectural Design

- Require different RTN than 1-bus design

- More datapaths allow more things to be done in
a single step

- 2-bus example that separates input and output
of ALU on different buses
» C register can be eliminated

= Control steps can be reduced by strobing ALU
results directly into their destinations



2-Bus SRC Microarchitecture

uA bus“ 31 0 ; B bus ; . . .
(‘In bus3 2) g (Outbus) - A bus carries data going into
A 32 general | 32 regiSterS
purpose ‘ . .
___ fegisters | - B bus carries data being gated
I . .
out of registers
« ALU function C=B is used for
Rt all simple register transfers
= = R ] = R[a] €R[Db]
E— PC > - Allows increment transfers
— % o Memory bus ’ R[H]GR[IH] 1
- >
I MD —————>
— A
A B
ALU
C
- |

Copyright © 2004 Pearson Prentice Hall, Inc.
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2-Bus Control for ADD Instruction

 add (:=op=12) ?R[ra] €R[rb]+R[rc]:

m Concrete RTN Control Sequence

TO MA<PC; PC,,.» C=B, MA,_,

T1 MD<M[MA]: PC&PC+4 Read, Wait, PC_,., INC4, PC,,
T2 TR€EMD; MD_,., C=B, IR,

T3 A€R[rb] Grb, R_,., C=B, A,

T4 Rlra]=A+R[rc]; Grc, R,,, ADD, Sra, R;,, End

- Note the appearance of Grc to gate the output of the
register rc onto the B bus and Sra to select ra to receive
data strobed from the A bus

- Two register select decoders will be needed
- Transparent latches will be required for MA at step To
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2-Bus Performance

» Speedup = a
T
« T; = execution time = IC X CPI X T
s [ 1S 1- or 2-bus
» Assumptions
e IC and t don’t change in going from 1 bus to 2 buses

e CPI goes from 8 to 7 clocks (naive assumption)
T]_ ICX8XT

8
. Speedup = T_z = oxoxs 7 1.143 = 14.3%

- What happens if clock also changes?
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3-Bus Design

- A 3-bus architecture allows both operand inputs
and the output of the ALU to be connected to
buses
= Shortens control sequences even further than 2-

bus design

- Both the C output register and the A input
register are eliminated

- Careful connection of register inputs and
outputs can allow multiple RTs in a step



3-Bus SRC Microarchitecture

C bus Abus B bus .
|2 y O 2, o - A-bus is ALU operand 1
RO - B-bus is ALU operand 2
e + C-bus is ALU output
e - Note MA input connected to
> the B-bus
- Allows operations such as
B R[n]€R[m]+R[k] to
J i ” complete in one cycle.
> il > - What are cost implications?
———— MA <€
-«—— Memory bus
— MD >
Y Y
A B
\ ™ /
C
= |

Copyright © 2004 Pearson Prentice Hall, Inc.
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3-Bus Control for 2DD Instruction

 add (:=op=12) ?R[ra] €R[rb]+R[rc]:

m Concrete RTN Control Sequence

TO MA<PC: MDEM[MA]: PC,,.,» MAB. , INC4, PC, , Read
PC&PC+4 Wait
T1 IREMD; MD_ .., C=B, Ir,,
T2 Rlra]=R[rb]+R[rc]; GArc, RA_ ,, GBrb, RB_,., ADD,
Sra, R,,, End

- Note the use of 3 register selection signals in step T2: GArc, GBrb,

and Sra

- In step To, PC moves to MA over bus B and goes through the ALU
Inc4 operation to reach PC again by way of bus C
> PC must be edge triggered or master-slave

- Once more MA must be a transparent latch



|

3-Bus Performance

» Speedup = a
T3
« T; = execution time = IC X CPI X T
= [ 1S 1- or 2-bus
- Assumptions
e IC and t don’t change in going from 1 bus to 3 buses
e CPI goes from 8 to 4 clocks (naive assumption)

e T Increases by 10%

. _ Ty _ ICX8XT _ 8 _ . 0
Speedup = T = Toxaxils 24 1.818 = 81.8%
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Machine Reset

- Reset sets program counter to a fixed value
= May be a hardwired value
= Contents of a memory cell whose address is hardwired

- The control step counter is reset

- Pending exceptions are prevented, so initialization
code is not interrupted

- It may set condition codes (if any) to known state
- It may clear some processor state registers
» A “soft” reset makes minimal changes
= PC, T (T-step counter)
- A “hard” reset initializes more processor state
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SRC Reset Capability

- Both hard and soft reset specified
- Strt signal will do a hard reset
» Effective only when machine is stopped
= Resets the PC to zero
= Resets all 32 general registers to zero
- Soft Rst signal is effective when the machine is
running
= Resets PC to zero
= Restarts instruction fetch
s Clears the Reset signal

- Actions on reset are described in
instruction interpretation



Abstract RTN for SRC Reset and Start

» Processor State
s Strt ;start signal
s Rst ;external reset signal

° instruction interpretation := (
—RunAStrt—=2 (Run€1l: PC, R[0..31]1€0);
RunAn—Rst=> (IR€M[PC]: PC&PC+4; instruction execution) :
RunARst=2> (Rst€0: PC€&0); instruction interpretation):
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Resets in the Middle of Instruction Execution

- The abstract RTN implies that reset takes effect
after the current instruction is done

- To describe reset during an instruction, we must
go from abstract to concrete RTN

- Why might we want to reset in the middle of an
instruction?
- Long instructions

- How would we reset in the middle of an
instruction?
> Check for Rst at each control time step
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Concrete RTN and Control with Reset

TO —Rst=> (MA€PC: C€E€PC+H4) : —Rst=> (PC_,., MA,,, Inc4, C;,)
Rst=2 (Rst€0:PC€<0: TCO0); Rst=2 (ClrPC, ClrR, GotoO);

T1 —Rst—> (MDEM[MA]: PC&C) : —Rst=> (Read, C_,., PC,,, Wait)
Rst=2 (Rst€0:PC€<0: TCO0); Rst=2 (ClrPC, ClrR, GotoO0);

T2 —Rst=> (IR€MD) : —Rst=2> (MD_,., IR,.)
Rst=2> (Rst€0:PC&0: T€O0); Rst—=> (ClrPC, ClrR, Goto0);
—Rst=2> (A€R[rb]) : —Rst=2 (Grb, R .., A;,)

T3 Rst=2> (Rst€<0:PC&0: T€O0); Rst—=2> (ClrPC, ClrR, Goto0);

T4 —Rst=> (C€A+R[rc]) : —Rst=> (Grc, R.,., ADD, C,.)
Rst=2> (Rst€0:PC&0: T€O0); Rst—=> (ClrPC, ClrR, Goto0);

T5 —Rst=2 (R[ra] €C) : —Rst=2> (C_,., Gra, R,,, End)
Rst=2 (Rst€0:PC&0: T€O0); Rst—=2> (ClrPC, ClrR, Goto0);

- Same RTN/control as before but must check Rst

- Reset actions are the same for every step of every instruction - control
signals are independent of time step or opcode

« ClrPC clears the program counter to all zeros
» ClrR clears the one bit Reset flip-flop
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Machine Exceptions

- An exception is an event that causes a change in
the program specified flow of control
> Internal are usually synchronous (overflow)
» External often asynchronous (keyboard)
- Often called interrupts
= Normal program execution is interrupted
- No standard naming conventions
= Exception for general term

= Interrupt for an exception caused by an external
event, such as an I/0O device condition
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Hardware/Software Exception Response

- The system must control the type of exceptions it
will process at any given time

- The state of the running program is saved when
an allowed exception occurs

- Control is transferred to the correct software
routine, or “handler” for this exception

- This exception, and others of less or equal
importance are disallowed during the handler

- The state of the interrupted program is restored
at the end of execution of the handler
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Hardware Support of Exceptions

- To determine relative importance, a priority
number is associated with every exception

- Hardware must save and change the PC
= Required for program execution

- Hardware must disable the current exception
= Could interrupt the handler before it can start

- Address of the handler is called the exception
vector and is a hardware function of the
exception type

- Exceptions must access a save area for PC and
other hardware saved items
= Choices are special registers or a hardware stack
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Instruction Support of Exceptions

- An instruction executed at the end of the handler
must reverse the state changes done by
hardware when the exception occurred

- There must be instructions to control what
exceptions are allowed
= The simplest of these enable or disable all

exceptions

- If processor state is stored in special registers on
an exception, instructions are needed to save
and restore these registers
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Types of Exceptions

- System reset

Exceptions associated with memory access
= Machine check — memory failure

= Data access — memory not available

= Instruction access — instruction not available (similar to
data access)

= Alignment — improperly aligned access

Program exceptions

= Illegal instruction — instruction not in IS

= Unimplemented instruction — legal but not in IS

= Privileged instructions — instruction not available

= Arithmetic errors

Miscellaneous hardware exceptions — (e.g. watchdog)
Trace and debugging exceptions

Non-maskable exceptions (NMI) — very bad cases
External exceptions—interrupts
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SRC Exception Processing

 The exception mechanism for SRC handles
external interrupts

» There are no priorities
= Only a simple enable and disable mechanism

- The PC and information about the source of the
interrupt are stored in special registers
= Any other state saving is done by software

- The interrupt source supplies 8 bits that are
used to generate the interrupt vector

- It also supplies a 16 bit code carrying
information about the cause of the interrupt



SRC Interrupt Processor State

» Processor interrupt mechanism
From Dev. —.

ireq: ;interrupt request signal
ToDev.  —. jack: ;interrupt acknowledge signal
Internal —>+ IE: ;one bit interrupt enable flag
toCPU  — - 1IPC<31..0>: ;storage for PC saved upon interrupt
to CPU 3y II<15..0>: ;info. on source of last interrupt
From Dey. —»© Isrc info<15..0>: ;information from interrupt source
Erom Dey —»s° Isrc_vect<7..0>: ;type code from interrupt source

Internal 0 Ivect<31..0>:= 20€0#Isrc_vect<7..0>#4Q0:

Bits 31 12 11 4 3 0
Ivect<31l..0> 0 Isrc vect<7..0> 0000
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SRC Instruction Interpretation with Interrupts

° 1nstruction interpretation :=
(—mRunAStrt=2>Run€<1:
RunA— (iregaIE) 2 (IR€M[PC]: PC€PC+4; instruction execution) :
RunA (iregaIE) 2 (IPCEPC<31..0>:
II<15..0>€Isrc _info<15..0>: iack€1:
TE€0O: PC€Ivect<31l..0>; iack<€0);
instruction interpretation);

- If interrupts are enabled, PC and interrupt info.
are stored in IPC and II, respectively

= With multiple requests, external priority circuit
(discussed in later chapter) determines which
vector & info. are returned

- Interrupts are disabled
- The acknowledge signal is pulsed
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SRC Instruction to Support Interrupts

- Return from interrupt
o rfi(:=op=29)—2> (PC&IPC: IE€]):
= Two RT actions must occur together

- Cannot be accomplished with branch and ee instruction
combination

- Save and restore interrupt state

= svi(:=op=16)2 (R[ral<15..0>€II<15..0>: R[rb]€IPC<31..0>);
o rvi(:=op=17)2> (II<15..0>¢ R[ra]<1l5..0> : IPC<31..0>¢< R[rb]):

- Enable/disable interrupt system

= een(:=o0op=10)> (IE<€1)
= edn (:=op=11)2> (IE<O0)



Concrete RTN with Interrupt

m Concrete RTN

— (1regnlE)

(iregnlE)

— (iregnIE) 2 (MASPC: C&PC+4) (iregnaIE) 2 (IPC€EPC: II€Isrc info:

IE€0: PC€20Q@#Isrc vect<7..0>#00:
iack€1l; iack€0; End);

T1 MD€EM[MA]: PC€C;
T2 IREMD;
T3 instruction execution

» PC could be transferred to IPC over the bus
- IT and IPC probably have separate inputs for
the externally supplied values

- Tack is pulsed, described as «-1; <—0, which is
easier as a control signal than in RTN
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Exceptions During Instruction Execution

- Some exceptions occur in the middle of instructions
> Some CISCs have very long instructions (string move)
= Some exception conditions prevent instruction

completion (uninstalled memory)

- CPU must make special provision for restarting

= Partially completed actions must be reversed so the
instruction can be re-executed after exception
handling

> Information about the internal CPU state must be

saved so that the instruction can resume where it left
off

- We will see that this problem is acute with pipeline
designs—always in middle of instructions.



Recap of Design Process

SRC
Informal description
} Chapter 2
Formal RTl\lI description
Block diagram architecture
}
Concrete RTN steps
} Chapter 4

Hardware design of blocks

Control sequences

Control unit and timing v
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Chapter 4 Summary

- Chapter 4 has done a non pipelined data path, and a
hardwired controller design for SRC

- The concepts of data path block diagrams, concrete
RTN, control sequences, control logic equations,
step counter control, and clocking have been
introduced

- The effect of different data path architectures on the
concrete RTN was briefly explored

- We have begun to make simple, quantitative
estimates of the impact of hardware design on
performance

- Hard and soft resets were designed

- A simple exception mechanism was supplied for
SRC



