
http://www.egr.unlv.edu/~b1morris/cpe300/

CPE300: Digital System

Architecture and Design
Fall 2011

MW 17:30-18:45 CBC C316

Control, Reset, Exceptions

10312011

Outline

• Review Datapath/Control

• 2- and 3-Bus SRC Processor Design

• Machine Reset

• Machine Exceptions

2

Register Transfer Descriptions

• Abstract RTN

▫ Defines ―what‖ not the ―how‖ (Chapter 2)

 Overall effect of instructions on programmer-visible
registers

▫ Implementation independent

 Registers and operations

• Concrete RTN

▫ Detailed register transfer steps in datapath to
produce overall effect

 Dependent on implementation details

▫ Steps correspond to processor clock pulses

3

1-Bus SRC Microarchitecture

• 5 classic components of computer

▫ Memory, Input, Output

▫ CPU – Control and Datapath

4

More Complete View of 1-Bus SRC Design

• Add control signals and gate-level logic

5

IR register logic and
data paths

Shift counter register

Condition bit flip-flop

1

2

3

4

5

6

Control Sequences

• Register transfers are the concrete RTN

• Control sequence are the control signals that
cause the RT

6

Step Concrete RTN Control Sequence

T0 MAPC: CPC+4; PCout, MAin, Inc4, Cin

T1 MDM[MA]: PCC Read, Cout, PCin, Wait

T2 IRMD MDout, IRin

T3 instruction_execution

Wait prevents control sequence from advancing to step T2
until memory asserts Done

Control Steps, Control Signals, and Timing

• Order control signals are written is irrelevant for
a given time step

▫ Step T0:
 (Inc4, Cin, PCout, MAin) = (PCout, MAin, Inc4, Cin)

• Timing distinction is made between gates and
strobes

▫ Gates early, strobes late in clock cycle

• Memory read should start as early as possible to
reduce wait time

• MA must have correct value before being used for

a read

7

Clocking the Datapath
• Register transfers result

from information
processing

▫ Register transfer timing –
register to register

• Level sensitive latch flip-
flops in example

• tR2valid is the period from
begin of gate signal till
inputs at R2 are valid

• tcomb is delay through
combinational logic, such
as ALU or cond logic

8

Signal Timing on the Datapath

• Several delays occur in getting data from R1 to
R2

▫ Gate delay through the 3-state bus driver—tg

▫ Worst case propagation delay on bus—tbp

▫ Delay through any logic, such as ALU—tcomb

▫ Set up time for data to affect state of R2—tsu

• Data can be strobed into R2 after this time

tR2valid = tg + tbp + tcomb + tsu

• Diagram shows strobe signal in the form for a
latch. It must be high for a minimum time—tw

• There is a hold time, th, for data after strobe ends

9

Signal Timing and Minimum Clock Cycle

• A total latch propagation delay is the sum

Tl = tsu + tw + th

▫ All above times are specified for latch

▫ th may be very small or zero

• The minimum clock period is determined by
finding longest path from flip-flop output to flip-
flop input

▫ This is usually a path through the ALU

▫ Conditional signals add a little gate delay

▫ Minimum clock period is

tmin = tg + tbp + tcomb + tl

10

Consequences of Flip-Flop Type
• Flip-flop types (Appendix A.12)

▫ Level-triggered (latch) – state can change while clock is high
▫ Edge-triggered – state changes only on a clock transition (high-

to-low or low-to-high)
▫ Master-slave – breaks feedback from output/input of register

allowing on a single state change per clock cycle
• During the high part of a strobe a latch changes its output

▫ If this output can affect its input, an error can occur (feeback)
• This can influence even the kind of concrete RTs that can be

written for a data path

• If the C register is implemented with latches, then
 C  C + MD; is not legal

• If the C register is implemented with master-slave or edge
triggered flip-flops, it is OK

11

The Control Unit
• Brain of a machine
• Datapath implementation led to control sequences to

implement instructions
• Control unit will generate the control sequences

▫ Logic to enable control signal
▫ Timing of signals

• The control unit’s job is to generate the control signals in
the proper sequence

• Things the control signals depend on
▫ The time step Ti
▫ The instruction op code (for steps other than T0, T1, T2)
▫ Some few datapath signals like CON, n=0, etc.
▫ Some external signals: reset, interrupt, etc. (to be covered)

• The components of the control unit are: a time state
generator, instruction decoder, and combinational logic
to generate control signals

12

Detailed Control Unit

13

Control signals for datapath

Instruction decode Clock and control sequence

Exception signals

Control Signal Encoder Logic

• Write equation describing control signal

▫ Find all occurrences of control signal in entire set
of control sequences

▫ Equation implemented by digital logic gates

14

Step ADD Control Sequence

T3 Grb, Rout, Ain

T4 Grc, Rout, ADD, Cin

T5 Cout, Gra, Rin, End

Step ADDI Control Sequence

T3 Grb, Rout, Ain

T4 c2out, ADD, Cin

T5 Cout, Gra, Rin, End

Step BR Control Sequence

T3 Grc, Rout, CONin

T4 Grb, Rout,

CONPCin, End

Step SHR Control Sequence

T3 c1out, Ld

T4 n=0(Grc, Rout, Ld)

T5 Grb, Rout, C=B, Cin

T6 n≠0(Cout, SHR, Cin, Decr, Goto6)

T7 Cout, Gra, Rin, End

Step ST Control Sequence

T3 Grb, BAout, Ain

T4 c2out, ADD, Cin

T5 Cout, MAin

T6 Gra, Rout, MDin, Write

T7 Wait, End

Step Fetch Control Sequence

T0 PCout, MAin, Inc4, Cin

T1 Read, Cout, PCin, Wait

T2 MDout, IRin

Control Signal Examples

▫ Gra = T5·(add + addi) + T6·st +T7·shr + …

• Use of datapath conditions
▫ Grc = T4·add + T4·(n=0)·shr + …

15

Step ADD Control Sequence

T3 Grb, Rout, Ain

T4 Grc, Rout, ADD, Cin

T5 Cout, Gra, Rin, End

Step ADDI Control Sequence

T3 Grb, Rout, Ain

T4 c2out, ADD, Cin

T5 Cout, Gra, Rin, End

Step BR Control Sequence

T3 Grc, Rout, CONin

T4 Grb, Rout,

CONPCin, End

Step SHR Control Sequence

T3 c1out, Ld

T4 n=0(Grc, Rout, Ld)

T5 Grb, Rout, C=B, Cin

T6 n≠0(Cout, SHR, Cin, Decr, Goto6)

T7 Cout, Gra, Rin, End

Step ST Control Sequence

T3 Grb, BAout, Ain

T4 c2out, ADD, Cin

T5 Cout, MAin

T6 Gra, Rout, MDin, Write

T7 Wait, End

Step Fetch Control Sequence

T0 PCout, MAin, Inc4, Cin

T1 Read, Cout, PCin, Wait

T2 MDout, IRin

Branching in the Control Unit
 • Tri-state gates allow 6 to be

applied to counter input

• Reset will synchronously
reset counter to step T0

• Mck is the master clock

oscillator signal

16

T1

T0

T2

. . .

Clocking Logic

• Generates Run signal

• Generate synchronized done signal SDone

• Generates R, W from Read, Write control

• Generates Enable which controls counter

17

Completed 1-Bus Design

• High level architecture block diagram

• Concrete RTN steps

• Hardware design of registers and data path logic

• Revision of concrete RTN steps where needed

• Control sequences

• Register clocking decisions

• Logic equations for control signals

• Time step generator design

• Clock run, stop, and synchronization logic

18

Alternate Architectural Design

• Require different RTN than 1-bus design

• More datapaths allow more things to be done in
a single step

• 2-bus example that separates input and output
of ALU on different buses

▫ C register can be eliminated

▫ Control steps can be reduced by strobing ALU
results directly into their destinations

19

2-Bus SRC Microarchitecture
 • A bus carries data going into

registers

• B bus carries data being gated
out of registers

• ALU function C=B is used for
all simple register transfers

▫ R[a]R[b]

• Allows increment transfers

▫ R[n]R[m]+1

20

2-Bus Control for ADD Instruction
• add(:=op=12)R[ra]R[rb]+R[rc]:

• Note the appearance of Grc to gate the output of the
register rc onto the B bus and Sra to select ra to receive
data strobed from the A bus

• Two register select decoders will be needed
• Transparent latches will be required for MA at step T0

21

Step Concrete RTN Control Sequence

T0 MAPC; PCout, C=B, MAin,

T1 MDM[MA]: PCPC+4 Read, Wait, PCout, INC4, PCin

T2 IRMD; MDout, C=B, IRin

T3 AR[rb] Grb, Rout, C=B, Ain

T4 R[ra]=A+R[rc]; Grc, Rout, ADD, Sra, Rin, End

2-Bus Performance

• Speedup =
𝑇1

𝑇2

• 𝑇𝑖 = execution time = 𝐼𝐶 × 𝐶𝑃𝐼 × 𝜏

▫ 𝑖 is 1- or 2-bus

• Assumptions

• 𝐼𝐶 and 𝑡 don’t change in going from 1 bus to 2 buses

• 𝐶𝑃𝐼 goes from 8 to 7 clocks (naïve assumption)

• Speedup =
𝑇1

𝑇2
=

𝐼𝐶×8×𝜏

𝐼𝐶×7×𝜏
=

8

7
= 1.143 = 14.3%

• What happens if clock also changes?

22

3-Bus Design

• A 3-bus architecture allows both operand inputs
and the output of the ALU to be connected to
buses

▫ Shortens control sequences even further than 2-
bus design

• Both the C output register and the A input
register are eliminated

• Careful connection of register inputs and
outputs can allow multiple RTs in a step

23

3-Bus SRC Microarchitecture
 • A-bus is ALU operand 1

• B-bus is ALU operand 2

• C-bus is ALU output

• Note MA input connected to
the B-bus

• Allows operations such as
R[n]R[m]+R[k] to

complete in one cycle.

• What are cost implications?

24

3-Bus Control for ADD Instruction
• add(:=op=12)R[ra]R[rb]+R[rc]:

• Note the use of 3 register selection signals in step T2: GArc, GBrb,
and Sra

• In step T0, PC moves to MA over bus B and goes through the ALU
Inc4 operation to reach PC again by way of bus C

▫ PC must be edge triggered or master-slave

• Once more MA must be a transparent latch

25

Step Concrete RTN Control Sequence

T0 MAPC: MDM[MA]:

PCPC+4

PCout, MABin, INC4, PCin, Read

Wait

T1 IRMD; MDout, C=B, Irin

T2 R[ra]=R[rb]+R[rc]; GArc, RAout, GBrb, RBout, ADD,

Sra, Rin, End

3-Bus Performance

• Speedup =
𝑇1

𝑇3

• 𝑇𝑖 = execution time = 𝐼𝐶 × 𝐶𝑃𝐼 × 𝜏

▫ 𝑖 is 1- or 2-bus

• Assumptions

• 𝐼𝐶 and 𝑡 don’t change in going from 1 bus to 3 buses

• 𝐶𝑃𝐼 goes from 8 to 4 clocks (naïve assumption)

• 𝜏 increases by 10%

• Speedup =
𝑇1

𝑇3
=

𝐼𝐶×8×𝜏

𝐼𝐶×4×1.1𝜏
=

8

4.4
= 1. 818 = 81.8%

26

Machine Reset

• Reset sets program counter to a fixed value

▫ May be a hardwired value

▫ Contents of a memory cell whose address is hardwired

• The control step counter is reset

• Pending exceptions are prevented, so initialization
code is not interrupted

• It may set condition codes (if any) to known state

• It may clear some processor state registers

• A ―soft‖ reset makes minimal changes

▫ PC, T (T-step counter)

• A ―hard‖ reset initializes more processor state

27

SRC Reset Capability

• Both hard and soft reset specified
• Strt signal will do a hard reset

▫ Effective only when machine is stopped
▫ Resets the PC to zero
▫ Resets all 32 general registers to zero

• Soft Rst signal is effective when the machine is
running
▫ Resets PC to zero
▫ Restarts instruction fetch
▫ Clears the Reset signal

• Actions on reset are described in
instruction_interpretation

28

Abstract RTN for SRC Reset and Start

• Processor State
▫ Strt ;start signal

▫ Rst ;external reset signal

• instruction_interpretation := (

 RunStrt(Run1: PC, R[0..31]0);

 RunRst(IRM[PC]: PCPC+4; instruction_execution):

 RunRst(Rst0: PC0); instruction_interpretation):

29

Resets in the Middle of Instruction Execution

• The abstract RTN implies that reset takes effect
after the current instruction is done

• To describe reset during an instruction, we must
go from abstract to concrete RTN

• Why might we want to reset in the middle of an
instruction?
• Long instructions

• How would we reset in the middle of an
instruction?

▫ Check for Rst at each control time step

30

Concrete RTN and Control with Reset

• Same RTN/control as before but must check Rst
▫ Reset actions are the same for every step of every instruction  control

signals are independent of time step or opcode
• ClrPC clears the program counter to all zeros
• ClrR clears the one bit Reset flip-flop

31

Step Concrete RTN Control Sequence

T0 Rst(MAPC: CPC+4):

Rst(Rst0:PC0: T0);

Rst(PCout, MAin, Inc4, Cin)

Rst(ClrPC, ClrR, Goto0);

T1 Rst(MDM[MA]: PCC):

Rst(Rst0:PC0: T0);

Rst(Read, Cout, PCin, Wait)

Rst(ClrPC, ClrR, Goto0);

T2 Rst(IRMD):

Rst(Rst0:PC0: T0);

Rst(MDout, IRin)

Rst(ClrPC, ClrR, Goto0);

T3

Rst(AR[rb]):

Rst(Rst0:PC0: T0);

Rst(Grb, Rout, Ain)

Rst(ClrPC, ClrR, Goto0);

T4 Rst(CA+R[rc]):

Rst(Rst0:PC0: T0);

Rst(Grc, Rout, ADD, Cin)

Rst(ClrPC, ClrR, Goto0);

T5 Rst(R[ra]C):

Rst(Rst0:PC0: T0);

Rst(Cout, Gra, Rin, End)

Rst(ClrPC, ClrR, Goto0);

Machine Exceptions

• An exception is an event that causes a change in
the program specified flow of control

▫ Internal are usually synchronous (overflow)

▫ External often asynchronous (keyboard)

• Often called interrupts

▫ Normal program execution is interrupted

• No standard naming conventions

▫ Exception for general term

▫ Interrupt for an exception caused by an external
event, such as an I/O device condition

32

Hardware/Software Exception Response

• The system must control the type of exceptions it
will process at any given time

• The state of the running program is saved when
an allowed exception occurs

• Control is transferred to the correct software
routine, or ―handler‖ for this exception

• This exception, and others of less or equal
importance are disallowed during the handler

• The state of the interrupted program is restored
at the end of execution of the handler

33

Hardware Support of Exceptions

• To determine relative importance, a priority
number is associated with every exception

• Hardware must save and change the PC
▫ Required for program execution

• Hardware must disable the current exception
▫ Could interrupt the handler before it can start

• Address of the handler is called the exception
vector and is a hardware function of the
exception type

• Exceptions must access a save area for PC and
other hardware saved items
▫ Choices are special registers or a hardware stack

34

Instruction Support of Exceptions

• An instruction executed at the end of the handler
must reverse the state changes done by
hardware when the exception occurred

• There must be instructions to control what
exceptions are allowed

▫ The simplest of these enable or disable all
exceptions

• If processor state is stored in special registers on
an exception, instructions are needed to save
and restore these registers

35

Types of Exceptions
• System reset
• Exceptions associated with memory access

▫ Machine check – memory failure
▫ Data access – memory not available
▫ Instruction access – instruction not available (similar to

data access)
▫ Alignment – improperly aligned access

• Program exceptions
▫ Illegal instruction – instruction not in IS
▫ Unimplemented instruction – legal but not in IS
▫ Privileged instructions – instruction not available
▫ Arithmetic errors

• Miscellaneous hardware exceptions – (e.g. watchdog)
• Trace and debugging exceptions
• Non-maskable exceptions (NMI) – very bad cases
• External exceptions—interrupts

36

SRC Exception Processing

• The exception mechanism for SRC handles
external interrupts

• There are no priorities

▫ Only a simple enable and disable mechanism

• The PC and information about the source of the
interrupt are stored in special registers

▫ Any other state saving is done by software

• The interrupt source supplies 8 bits that are
used to generate the interrupt vector

• It also supplies a 16 bit code carrying
information about the cause of the interrupt

37

SRC Interrupt Processor State

• Processor interrupt mechanism
 ireq: ;interrupt request signal

 iack: ;interrupt acknowledge signal

 IE: ;one bit interrupt enable flag

 IPC<31..0>: ;storage for PC saved upon interrupt

 II<15..0>: ;info. on source of last interrupt

 Isrc_info<15..0>: ;information from interrupt source

 Isrc_vect<7..0>: ;type code from interrupt source

 Ivect<31..0>:= 20@0#Isrc_vect<7..0>#4@0:

38

Bits 31 12 11 4 3 0

Ivect<31..0> 0 Isrc_vect<7..0> 0000

From Dev. 

To Dev. 

Internal 

to CPU 

to CPU 

From Dev. 

From Dev 

Internal 

SRC Instruction Interpretation with Interrupts

• instruction_interpretation :=

 (RunStrtRun1:

 Run(ireqIE)(IRM[PC]: PCPC+4; instruction_execution):

 Run(ireqIE)(IPCPC<31..0>:

 II<15..0>Isrc_info<15..0>: iack1:

 IE0: PCIvect<31..0>; iack0);

 instruction_interpretation);

• If interrupts are enabled, PC and interrupt info.

are stored in IPC and II, respectively
▫ With multiple requests, external priority circuit

(discussed in later chapter) determines which
vector & info. are returned

• Interrupts are disabled
• The acknowledge signal is pulsed

39

SRC Instruction to Support Interrupts

• Return from interrupt
▫ rfi(:=op=29)(PCIPC: IE1):

▫ Two RT actions must occur together
 Cannot be accomplished with branch and ee instruction

combination

• Save and restore interrupt state
▫ svi(:=op=16)(R[ra]<15..0>II<15..0>: R[rb]IPC<31..0>);

▫ rvi(:=op=17)(II<15..0> R[ra]<15..0> : IPC<31..0> R[rb]):

• Enable/disable interrupt system
▫ een(:=op=10)(IE1)

▫ edn(:=op=11)(IE0)

40

Concrete RTN with Interrupt

• PC could be transferred to IPC over the bus

• II and IPC probably have separate inputs for

the externally supplied values

• Iack is pulsed, described as 1; 0, which is

easier as a control signal than in RTN

41

Step
Concrete RTN

(ireqIE) (ireqIE)

T0 (ireqIE)(MAPC: CPC+4): (ireqIE)(IPCPC: IIIsrc_info:

IE0: PC20@#Isrc_vect<7..0>#00:

iack1; iack0; End);

T1 MDM[MA]: PCC;

T2 IRMD;

T3 instruction_execution

Exceptions During Instruction Execution

• Some exceptions occur in the middle of instructions
▫ Some CISCs have very long instructions (string move)
▫ Some exception conditions prevent instruction

completion (uninstalled memory)

• CPU must make special provision for restarting
▫ Partially completed actions must be reversed so the

instruction can be re-executed after exception
handling

▫ Information about the internal CPU state must be
saved so that the instruction can resume where it left
off

• We will see that this problem is acute with pipeline
designs—always in middle of instructions.

42

Recap of Design Process

43

Informal description

 Formal RTN description

Block diagram architecture

Concrete RTN steps

Hardware design of blocks

Control sequences

Control unit and timing

Chapter 2

Chapter 4

SRC

Chapter 4 Summary
• Chapter 4 has done a non pipelined data path, and a

hardwired controller design for SRC
• The concepts of data path block diagrams, concrete

RTN, control sequences, control logic equations,
step counter control, and clocking have been
introduced

• The effect of different data path architectures on the
concrete RTN was briefly explored

• We have begun to make simple, quantitative
estimates of the impact of hardware design on
performance

• Hard and soft resets were designed
• A simple exception mechanism was supplied for

SRC

44

