
http://www.egr.unlv.edu/~b1morris/cpe300/

CPE300: Digital System

Architecture and Design
Fall 2011

MW 17:30-18:45 CBC C316

1-Bus Architecture and Datapath

10262011

Outline

• 1-Bus Microarchitecture and Datapath Review

• 1-Bus Logic Design

• Control Unit

2

Register Transfer Descriptions

• Abstract RTN

▫ Defines ―what‖ not the ―how‖ (Chapter 2)

 Overall effect of instructions on programmer-visible
registers

▫ Implementation independent

 Registers and operations

• Concrete RTN

▫ Detailed register transfer steps in datapath to
produce overall effect

 Dependent on implementation details

▫ Steps correspond to processor clock pulses

3

1-Bus SRC Microarchitecture

• 5 classic components of computer

▫ Memory, Input, Output

▫ CPU – Control and Datapath

4

Microarchitecture Constraints
• One bus connecting registers

▫ Only single register transfer at a
time

• Memory address must be copied into
memory address (MA) register by
CPU

• Memory data written from or read
into memory data (MD) register

• ALU operation
▫ First operand always registered in A

▫ Second operand always comes from
bus

▫ Result registered in C

• Information into IR and MA only
from bus
▫ Decoder (not shown) interprets

contents of IR

▫ MA supplies address to memory not
CPU bus

5

More Complete View of 1-Bus SRC Design

• Concrete RTN adds detail to the datapath

6

IR register logic and
data paths

Shift counter register

Condition bit flip-flop

RTN for ADD Instruction

• Develop steps to execute instruction

• Abstract RTN
▫ (IRM[PC]: PCPC+4; instsruction_execution);

▫ Instruction_execution := (…

 add(:=op=12)R[ra]R[rb]+R[rc]:

 …);

• Concrete RTN

▫ 3 concrete RT

 (T3, T4, T5)

▫ 2 RT in T0

▫ 6 total clock cycles

7

Step RTN

T0 MAPC: CPC+4;

T1 MDM[MA]: PCC

T2 IRMD

T3 AR[rb]

T4 CA+R[rc];

T5 R[ra]C

fe
tc

h

ex
e

cu
ti

o
n

RTN for ADD Instruction

• Develop steps to execute instruction

• Abstract RTN
▫ (IRM[PC]: PCPC+4; instsruction_execution);

▫ Instruction_execution := (…

 add(:=op=12)R[ra]R[rb]+R[rc]:

 …);

• Concrete RTN

▫ 3 concrete RT

 (T3, T4, T5)

▫ 2 RT in T0

▫ 6 total clock cycles

8

Step RTN

T0 MAPC: CPC+4;

T1 MDM[MA]: PCC

T2 IRMD

T3 AR[rb]

T4 CA+R[rc];

T5 R[ra]C

fe
tc

h

ex
e

cu
ti

o
n

RTN for Load/Store Instruction

• Abstract RTN
▫ ld(:=op=1)R[ra]M[disp]:

▫ st(:=op=3)M[disp]R[ra]:

 disp<31..0>:=((rb=0)c2<16..0> {sign-extend}:

 (rb≠0)R[rb]+c2<16..0>{sign-ext,2’s comp}

• Concrete RTN

9

Step RTN ld RTN st

T0-T2 Instruction Fetch

T3 A(rb=00: rb≠0R[rb]);

T4 CA+(16@IR<16>#IR<15..0>);

T5 MAC;

T6 MDM[MA]; MDR[ra]

T7 R[ra]MD; M[MA]MD;

T3, T4 are effective address arithmetic calculation

Notes for Load/Store RTN

• T0-T2 are same as for add (all instructions)

• T3-T5 are same for ld and st – calculate disp

• Need way to use 0 for R[rb] when rb=0

• 15-bit sign extension of IR<16..0> is needed

• Memory read into MD at T6 of ld

• Write of MD into memory at T7 of st

10

RTN for Conditional Branch

• Abstract RTN
▫ br(:=op=8)(condPCR[rb]):

 cond:=(

 c3<2..0>=00: ;never

 c3<2..0>=11: ;always

 c3<2..0>=2R[rc]=0: ;if register is zero

 c3<2..0>=3R[rc]≠0: ;if register is nonzero

 c3<2..0>=4R[rc]<31>=0: ;if register is positive or zero

 c3<2..0>=5R[rc]<31>=1): ;if register is negative

• Concrete RTN

11

Step RTN

T0-T2 Instruction Fetch

T3 CONcond(R[rc]);

T4 CONPCR[rb];

CON is 1-bit register that is set based on condition logic:
the contents of c<2..0> and R[rc]

Notes on Conditional Branch RTN

• c3<2..0> are just 3 low order bits of IR

• cond() is evaluated by combinational logic
circuit having inputs R[rc] and c3<2..0>

• One bit CON register is not accessible to the

programmer

▫ Holds intermediate output of combinational logic
for the condition

• If branch succeeds
▫ PC is replaced by contents of a general register

12

RTN for SRC Shift Right

• Abstract RTN
▫ shr(:=op=26)R[ra]<31..0>(n@0)#R[rb]<31..n>:

 n:=((c3<4..0>=0)R[rc]<4..0>: ;shift count in reg.

 (c3<4..0>≠0)c3<4..0>): ;shift cnt const. field

• Concrete RTN

13

Step RTN

T0-T2 Instruction Fetch

T3 nIR<4..0>

T4 (n=0)(nR[rc]<4..0>);

T5 CR[rb]

T6 Shr(:=n≠0(C<31..0>0#C<31..1>: nn-1; Shr));

T7 R[ra]C

T6 is repeated n times

Notes on Shift RTN

• Abstract RTN defines n with :=

• Concrete RTN has n as a physical register

• n is not only the shift count but used as a
counter in step T6
▫ T6 is repeated n times through recursive Shr call

▫ Will require more complicated control, described
later

14

Datapath/Control Unit Separation

• Interface between datapath and control consists
of gate and strobe signals
▫ Gate – selects one of several values to apply to a

common point (e.g. bus)
▫ Strobe – changes the contents of a register (flip-

flops) to match new inputs

• Type of flip-flop used in a register has significant
impact on control and limited impact on
datapath
▫ Latch – simpler hardware but more complex

timing
▫ Edge triggered – simpler timing but

approximately 2x hardware

15

Latch/Edge-Triggered Operation

• Latch output follows input while strobe is high

• Edge-triggering samples input at the edge time

16

D

C

D

C

Q

D Q

C

D

C

Q

More Complete View of 1-Bus SRC Design

• Add control signals and gate-level logic

17

IR register logic and
data paths

Shift counter register

Condition bit flip-flop

1

2

3

4

5

6

Register File and Control Signals
• Register selection

▫ IR decode of register fields

▫ Grx signal to gate register rx

by decoder

• Rout gates selected register

onto the bus

• Rin strobes selected register

from the bus

• Base address out BAout gates
zero signal when R[0] is

selected

18

Extracting Constants/op from IR
• 3D blocks distinguish multi-bit

elements

▫ Register flip-flops

▫ Tri-state bus drivers

• Sign bits fanned out from one
to several bits and gated onto
bus

▫ IR<21> is sign bit of c1 and

must be sign extended

▫ IR<16> is sign bit of c2 and

must be sign extended

19

Memory Interface

• MD is loaded from memory bus or from CPU bus

• MD can drive memory bus or CPU bus

• MA only gets address from CPU processor bus

20

ALU and Associated Registers

• Add control lines to select ALU function
▫ INC4 for hardware supported PC increment

21

1-Bit ALU Logic-Level Design

22

PC increment Negative numbers in B

AND gates select

appropriate output

Control Sequences

• Register transfers are the concrete RTN

• Control sequence are the control signals that
cause the RT

23

Step Concrete RTN Control Sequence

T0 MAPC: CPC+4; PCout, MAin, Inc4, Cin

T1 MDM[MA]: PCC Read, Cout, PCin, Wait

T2 IRMD MDout, IRin

T3 instruction_execution

Wait prevents control sequence from advancing to step T2
until memory asserts Done

Control Steps, Control Signals, and Timing

• Order control signals are written is irrelevant for
a given time step

▫ Step T0:
 (Inc4, Cin, PCout, MAin) = (PCout, MAin, Inc4, Cin)

• Timing distinction is made between gates and
strobes

▫ Gates early, strobes late in clock cycle

• Memory read should start as early as possible to
reduce wait time

• MA must have correct value before being used for

a read

24

Control for ADD Instruction
• add(:=op=12)R[ra]R[rb]+R[rc]:

• Grx used to gate correct 5-bit register select code

• End signals the control to start over at step T0

25

Step Concrete RTN Control Sequence

T0 MAPC: CPC+4; PCout, MAin, Inc4, Cin

T1 MDM[MA]: PCC Read, Cout, PCin, Wait

T2 IRMD MDout, IRin

T3 AR[rb] Grb, Rout, Ain

T4 CA+R[rc]; Grc, Rout, ADD, Cin

T5 R[ra]C Cout, Gra, Rin, End

RTN for ADDI Instruction
• addi(:=op=13)R[ra]R[rb]+c2<16..0> {two’s

complement, sign-extend}:

• C2out signal sign extends IR<16..0> and gates it to the
bus

26

Step Concrete RTN Control Sequence

T0 MAPC: CPC+4; PCout, MAin, Inc4, Cin

T1 MDM[MA]: PCC Read, Cout, PCin, Wait

T2 IRMD MDout, IRin

T3 AR[rb] Grb, Rout, Ain

T4 CA+c2 {sign-extend}; c2out, ADD, Cin

T5 R[ra]C Cout, Gra, Rin, End

RTN for st Instruction
• st(:=op=3)M[disp]R[ra]:

▫ disp<31..0>:=((rb=0)c2<16..0> {sign-extend}:

 (rb≠0)R[rb]+c2<16..0>{sign-ext,2’s comp}

• Notice the use of BAout in step T3 not Rout as done in addi

27

Step Concrete RTN Control Sequence

T0-T2 instruction_fetch

T3 A(rb=00: rb≠0R[rb]); Grb, BAout, Ain

T4 CA+(16@IR<16>#IR<15..0>); c2out, ADD, Cin

T5 MAC; Cout, MAin

T6 MDR[ra] Gra, Rout, MDin, Write

T7 M[MA]MD; Wait, End

Shift Counter

• Concrete RTN for shr relies upon a 5-bit

register to hold the shift count

• Must load, decrement, and have a way to test if
the contents equal 0

28

Control for Shift Instruction
• shr(:=op=26)R[ra]<31..0>(n@0)#R[rb]<31..n>:

▫ n:=((c3<4..0>=0)R[rc]<4..0>: ;shift count in reg.

 (c3<4..0>≠0)c3<4..0>): ;count const. field

• Conditional control signals and repeating control are new concepts

▫ Goto6 – repeats step T6 but must be carefully timed for the looping

29

Step Concrete RTN Control Sequence

T0-T2 Instruction Fetch

T3 nIR<4..0> c1out, Ld

T4 (n=0)(nR[rc]<4..0>); n=0(Grc, Rout, Ld)

T5 CR[rb] Grb, Rout, C=B, Cin

T6 Shr(:=n≠0

(C<31..0>0#C<31..1>:

nn-1; Shr));

n≠0(Cout, SHR, Cin, Decr,

Goto6)

T7 R[ra]C Cout, Gra, Rin, End

Branching

• Branch conditions dependent on cond field an a
register value (not flag or flag register)
▫ cond:=(

 c3<2..0>=00: ;never

 c3<2..0>=11: ;always

 c3<2..0>=2R[rc]=0: ;if register is zero

 c3<2..0>=3R[rc]≠0: ;if register is nonzero

 c3<2..0>=4R[rc]<31>=0: ;if register is positive or zero

 c3<2..0>=5R[rc]<31>=1): ;if register is negative

• Logic expression for condition
▫ cond = (c3<2..0>=1)  (c3<2..0>=2)  (R[rc]=0) 

(c3<2..0>=3)  (R[rc]=0)  (c3<2..0>=4)  R[rc]<31>

 (c3<2..0>=5)  R[rc]<31>

30

Conditional Value Computation

• NOR gate does test of R[rc]=0 on bus

31

Control for Branch Instruction
• br(:=op=8)(condPCR[rb]):

• Condition logic always connected to CON

▫ R[rc] only needs to be placed on bus in T3

• Only PCin is conditional in T4 since gating R[rb] to bus makes no

difference if it is not used

32

Step Concrete RTN Control Sequence

T0-T2 Instruction Fetch

T3 CONcond(R[rc]); Grc, Rout, CONin

T4 CONPCR[rb]; Grb, Rout, CONPCin, End

Summary of Design Process

• Informal description  formal RTN description 
block diagram arch.  concrete RTN steps 
hardware design of blocks control sequences 
control unit and timing

• At each level, more decisions must be made
▫ These decisions refine the design
▫ Also place requirements on hardware still to be

designed

• The nice one way process above has circularity
▫ Decisions at later stages cause changes in earlier ones
▫ Happens less in a text than in reality because

 Can be fixed on re-reading

 Confusing to first time student

33

Clocking the Datapath
• Register transfers result

from information
processing

▫ Register transfer timing –
register to register

• Level sensitive latch flip-
flops in example

• tR2valid is the period from
begin of gate signal till
inputs at R2 are valid

• tcomb is delay through
combinational logic, such
as ALU or cond logic

34

Signal Timing on the Datapath

• Several delays occur in getting data from R1 to
R2

▫ Gate delay through the 3-state bus driver—tg

▫ Worst case propagation delay on bus—tbp

▫ Delay through any logic, such as ALU—tcomb

▫ Set up time for data to affect state of R2—tsu

• Data can be strobed into R2 after this time

tR2valid = tg + tbp + tcomb + tsu

• Diagram shows strobe signal in the form for a
latch. It must be high for a minimum time—tw

• There is a hold time, th, for data after strobe ends

35

Signal Timing and Minimum Clock Cycle

• A total latch propagation delay is the sum

Tl = tsu + tw + th

▫ All above times are specified for latch

▫ th may be very small or zero

• The minimum clock period is determined by
finding longest path from flip-flop output to flip-
flop input

▫ This is usually a path through the ALU

▫ Conditional signals add a little gate delay

▫ Minimum clock period is

tmin = tg + tbp + tcomb + tl

36

Consequences of Flip-Flop Type
• Flip-flop types (Appendix A.12)

▫ Level-triggered (latch) – state can change while clock is high
▫ Edge-triggered – state changes only on a clock transition (high-

to-low or low-to-high)
▫ Master-slave – breaks feedback from output/input of register

allowing on a single state change per clock cycle
• During the high part of a strobe a latch changes its output

▫ If this output can affect its input, an error can occur (feeback)
• This can influence even the kind of concrete RTs that can be

written for a data path

• If the C register is implemented with latches, then
 C  C + MD; is not legal

• If the C register is implemented with master-slave or edge
triggered flip-flops, it is OK

37

The Control Unit
• Brain of a machine
• Datapath implementation led to control sequences to

implement instructions
• Control unit will generate the control sequences

▫ Logic to enable control signal
▫ Timing of signals

• The control unit’s job is to generate the control signals in
the proper sequence

• Things the control signals depend on
▫ The time step Ti
▫ The instruction op code (for steps other than T0, T1, T2)
▫ Some few datapath signals like CON, n=0, etc.
▫ Some external signals: reset, interrupt, etc. (to be covered)

• The components of the control unit are: a time state
generator, instruction decoder, and combinational logic
to generate control signals

38

Detailed Control Unit

39

Control signals for datapath

Instruction decode Clock and control sequence

Exception signals

Control Signal Encoder Logic

• Write equation describing control signal

▫ Find all occurrences of control signal in entire set
of control sequences

▫ Equation implemented by digital logic gates

40

Step ADD Control Sequence

T3 Grb, Rout, Ain

T4 Grc, Rout, ADD, Cin

T5 Cout, Gra, Rin, End

Step ADDI Control Sequence

T3 Grb, Rout, Ain

T4 c2out, ADD, Cin

T5 Cout, Gra, Rin, End

Step BR Control Sequence

T3 Grc, Rout, CONin

T4 Grb, Rout,

CONPCin, End

Step SHR Control Sequence

T3 c1out, Ld

T4 n=0(Grc, Rout, Ld)

T5 Grb, Rout, C=B, Cin

T6 n≠0(Cout, SHR, Cin, Decr, Goto6)

T7 Cout, Gra, Rin, End

Step ST Control Sequence

T3 Grb, BAout, Ain

T4 c2out, ADD, Cin

T5 Cout, MAin

T6 Gra, Rout, MDin, Write

T7 Wait, End

Step Fetch Control Sequence

T0 PCout, MAin, Inc4, Cin

T1 Read, Cout, PCin, Wait

T2 MDout, IRin

Control Signal Examples

▫ Gra = T5·(add + addi) + T6·st +T7·shr + …

• Use of datapath conditions
▫ Grc = T4·add + T4·(n=0)·shr + …

41

Step ADD Control Sequence

T3 Grb, Rout, Ain

T4 Grc, Rout, ADD, Cin

T5 Cout, Gra, Rin, End

Step ADDI Control Sequence

T3 Grb, Rout, Ain

T4 c2out, ADD, Cin

T5 Cout, Gra, Rin, End

Step BR Control Sequence

T3 Grc, Rout, CONin

T4 Grb, Rout,

CONPCin, End

Step SHR Control Sequence

T3 c1out, Ld

T4 n=0(Grc, Rout, Ld)

T5 Grb, Rout, C=B, Cin

T6 n≠0(Cout, SHR, Cin, Decr, Goto6)

T7 Cout, Gra, Rin, End

Step ST Control Sequence

T3 Grb, BAout, Ain

T4 c2out, ADD, Cin

T5 Cout, MAin

T6 Gra, Rout, MDin, Write

T7 Wait, End

Step Fetch Control Sequence

T0 PCout, MAin, Inc4, Cin

T1 Read, Cout, PCin, Wait

T2 MDout, IRin

Branching in the Control Unit
 • Tri-state gates allow 6 to be

applied to counter input

• Reset will synchronously
reset counter to step T0

• Mck is the master clock

oscillator signal

42

T1

T0

T2

. . .

Clocking Logic

• Generates Run signal

• Generate synchronized done signal SDone

• Generates R, W from Read, Write control

• Generates Enable which controls counter

43

Completed 1-Bus Design

• High level architecture block diagram

• Concrete RTN steps

• Hardware design of registers and data path logic

• Revision of concrete RTN steps where needed

• Control sequences

• Register clocking decisions

• Logic equations for control signals

• Time step generator design

• Clock run, stop, and synchronization logic

44

