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▫ Addition/Subtraction 
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▫ Divide 

• Floating Point Arithmetic 
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Digital Number Systems 
• Expanded generalization of lecture 07 topics 

 
• Number systems have a base (radix) b 
• Positional notation of an m digit base b number 

▫ 𝑥 = 𝑥𝑚−1𝑥𝑚−2 …𝑥1𝑥0 

▫ Value 𝑥 =  𝑥𝑖𝑏
𝑖𝑚−1

𝑖=0  
• Base b fraction 

▫ f= .f-1 f-2… f-m 

▫ Value is integer f-1 f-2… f-m divided by 𝑏𝑚  
• Mixed fixed point number 

▫ 𝑥𝑛−1𝑥𝑛−2 …𝑥1𝑥0. 𝑥−1𝑥−2 …𝑥−𝑚 
▫ Value of n+m digit integer 

 𝑥𝑛−1𝑥𝑛−2 …𝑥1𝑥0𝑥−1𝑥−2 …𝑥−𝑚 
▫ Divided by 𝑏𝑚 
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Negative Numbers and Complements 

• Given m digit base b number x 

• Radix complement (b’s complement) 

▫ 𝑥𝑐 = 𝑏𝑚 − 𝑥  mod 𝑏𝑚 

▫ mod 𝑏𝑚 only has effect for x=0 

 What is radix complement of x = 0? 

• Diminished radix complement ((b-1)’s 
complement) 

▫ 𝑥 𝑐 = 𝑏𝑚 − 1 − 𝑥 

• The complement operations are related 

▫ 𝑥𝑐 = 𝑥 𝑐 + 1  mod 𝑏𝑚 

▫ Given one, easy to compute other 
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Digitwise Computation of Diminished Radix Complement 

• 𝑥 𝑐 = 𝑏𝑚 − 1 − 𝑥 

• 𝑥 𝑐 =  𝑏 − 1 𝑏𝑖 −𝑚−1
𝑖=0  𝑥𝑖 𝑏𝑖𝑚−1

𝑖=0  

• 𝑥 𝑐 =  𝑏 − 1 − 𝑥𝑖 𝑏𝑖𝑚−1
𝑖=0  

 

• Diminished radix number is an m digit base b 
number 

▫ Each digit is obtained (as diminished 
complement) from corresponding digit in x  
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Scaling Complement Numbers 

• Divide by b – move radix point left => shift right 

▫ Fill rule for even b 

 Zero fill when 𝑥𝑚−1 < 𝑏/2 (positive) 

 (b-1) fill when 𝑥𝑚−1 ≥ 𝑏/2 (negative) 

• Multiply by b – move radix point right => shift 
left 

▫ Overflow conditions 

 Result appears to change sign 

 Non-zero digit shifted off msb (positive) 

 None-(b-1) digit off msb (negative) 
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Fixed Point Addition and Subtraction 

• When radix point is in the same position for 
both operands 

▫ Add/Sub acts as if numbers were integers 

• Addition of signed numbers in radix 
complement system only needs an unsigned 
adder 

▫ Must design m digit base b unsigned adder 

• Radix complement signed addition theorem 

▫ s = rep(x) + rep(y) = rep(x+y) 

▫ rep(x) := b’s complement representation of x 

▫ Does not consider overflow 
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Unsigned Addition Hardware 
• Perform operation on each 

digit of m digit base b 
number 

• Each digit cell requires 
operands xj and yj as well 
as a carry in cj 

• Sum 

▫ 𝑠𝑗 = 𝑥𝑗 + 𝑦𝑗 + 𝑐𝑗  mod 𝑏 

• Carry-out 

▫ 𝑐𝑗 + 1 = (𝑥𝑗 + 𝑦𝑗 + 𝑐𝑗)/𝑏  

▫ All carries are less than 
equal to 1 regardless of b 

• Works for any fixed radix 
point location (e.g. 
fractions) 
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Ripple-carry adder: carry 
propagates from low digits to msb 



Unsigned Addition Example 
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• With fixed number of digits, overflow occurs on 
carry from leftmost digit 

• Carries are 0 or 1 in all cases 

• Addition is defined by a table of sum and carry 
for b2 digit pairs 

Op1 1 2 . 0 34 = 6.187510 

Op2 + 1 3 . 2 14 = 7.562510 

Carry 0 1 0 1 

Sum 3 1 . 3 04 = 13.75 

+ 0 1 2 3 

0 00 01 02 03 

1 01 02 03 10 

2 02 03 10 11 

3 03 10 11 12 

Base 4 addition table 



Adder Implementation Alternatives  

• For base b=2k, each digit is 
equivalent to k bits 

• Adder can be viewed as 
logic circuit with 2k+1 
inputs and k+1 outputs 
 

• Ripple carry adder 
▫ Choice of k affects 

computation delay 
▫ When 2 level logic is used 

what is max gate delay for 
m digit addition? 
 2m 
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Complement Subtracter 
• Subtraction in radix 

complement is addition with 
negated (complemented) 
second input 

▫ x – y = x + (-y) 

▫ Must supply overflow 
detection 

• Radix complement is addition of 
1 to diminished radix 
complement 
(𝑥𝑐 = 𝑥 𝑐 + 1  mod 𝑏𝑚) 

• Easy to take diminished radix 
complement and use carry in of 
adder to supply +1 for radix 
complement 
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2’s Complement Ripple-Carry 

• Binary ripple-carry adder/subtracter 
 
 
 
 
 
 
 
 
 

• XOR gates select y for addition or complement 
of y for subtraction in base 2 
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Overflow Detection  

• Occurs when adding number of like sign and the 
result seems to have opposite sign 

• For even b: sign determined by the leftmost digit 

▫ Overflow detector only requires 

 xm-1, ym-1, sm-1, add/subtract control (r) 
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Binary ripple-carry adder/subtracter 



Carry Lookahead 

• Speed of addition depends on carries 
▫ Carries need to propagate from lsb to msb 

• Two level logic for base b digit becomes complex 
quickly for increasing k (b=2k) 
▫ Length of carry chain divided by k 

• Need to compute carries quickly 
1. Determine if addition  
 in position j generates a  
 carry 
2. Determine if carry is  
 propagated from input  
 to output of digit j 
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Binary Generate and Propagate Signals 

• Generate: digit at position j will have a carry 

▫ 𝐺𝑗 = 𝑥𝑗𝑦𝑗 

• Propagate: carry in passes through to carry out 

▫ 𝑃𝑗 = 𝑥𝑗 + 𝑦𝑗 

• Carry is defined as 1 if the sum generates a carry 
or if a carry is propagated  

▫ 𝑐𝑗 + 1 =
𝐺𝑗 + 𝑃𝑗𝑐𝑗 
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Carry Lookahead Speed 

• 4 bit carry equations 

▫ 𝑐1 =  𝐺0 +  𝑃0𝑐0 

▫ 𝑐2 =  𝐺1 +  𝑃1𝐺0 +  𝑃1𝑃0𝑐0 

▫ 𝑐3 =  𝐺2 +  𝑃2𝐺1 +  𝑃2𝑃1𝐺0 +  𝑃2𝑃1𝑃0𝑐0 

▫ 𝑐4 =  𝐺3 +  𝑃3𝐺2 +  𝑃3𝑃2𝐺1 +  𝑃3𝑃2𝑃1𝐺0 
+  𝑃3𝑃2𝑃1𝑃0𝑐0 

• Carry lookahead delay 

▫ One gate delay for to calculate G or P 

▫ 2 levels of gates for a carry 

▫ 2 gate delays for full adder (sj) 

• The number of OR gate inputs (terms) and AND 
gate inputs (literals in a term) grows as the number 
of carries generated by lookahead 
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Recursive Carry Lookahead 
• Apply lookahead logic to groups of digits 
• Group of 4 digits (level 1) 

▫ Group generate: 

 𝐺1
0 =  𝐺3 +  𝑃3𝐺2 +  𝑃3𝑃2𝐺1 +  𝑃3𝑃2𝑃1𝐺0 

▫ Group propagate: 

 𝑃1
0 =  𝑃3𝑃2𝑃1𝑃0 

▫ Can further define level 2 signals which are groups of 
level 1 groups  

• Group k terms at each level  logkm levels for m bit 
addition 
▫ Each level introduces 2 more gate delays 
▫ k chosen to trade-off reduced delay and complexity of 

G and P logic 
 Typically 𝑘 ≥ 4 however structure easier to see for k=2 
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Carry Lookahead Adder Diagram 

• Group size k=2 
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Digital Multiplication 

• Based on digital addition 

▫ Generate partial products (from each digit) and 
sum for the complete product 

▫ “Pencil and paper addition” 
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Parallel Array Multiplier 
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Parallel Array Multiplier Operation 

• Each box in array does the base b digit 
calculations 

▫ 𝑝𝑘(out):=  (𝑝𝑘(in) +  𝑥𝑦 +  𝑐(in)) mod 𝑏 

▫ 𝑐 (out): =  (𝑝𝑘(in) +  𝑥𝑦 +  𝑐)/𝑏  

• Inputs and outputs of boxes are single base b 
digits (including carries) 

• Worst case path from input to output is about 
6m gates if each box is a 2 level circuit 

▫ In binary, each box is a full adder with an extra 
AND gate to compute xy 
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Accumulated Partial Product 

• Partial products accumulated rather than 
collected and added in the end 
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1. for i := 0 step 1 until 2m-1 

2.  pi := 0; 

3. for j := 0 step 1 until m-1 

4.  begin 

5.   c := 0; 

6.   for i := 0 step 1 until m-1 

7.    begin 

8.     pj+i := (pj+i + xi yj + c) mod b; 

9.     c := (pj+i + xi yj + c)/b; 

10.    end; 

11.   pj+m := c; 

12.  end; c is a single base b digit  
(no longer 0, 1 as in addition) 



Series Parallel Multiplication 

• Hardware multiplies the full multiplicand by one 
multiplier digit and adds it to a running product 

▫ 𝑝 ∶=  𝑝 +  𝑥𝑦𝑗𝑏
𝑗 

• Multiplication by 𝑏𝑗 is done by scaling 

▫ 𝑥𝑦𝑗 
shifted left, or  

▫ 𝑝 shifted right by 𝑗 digits 

• Generation of the partial product 𝑥𝑦𝑗 is more 
difficult than the shifted add 

▫ Exception: base 2 

 partial product is either x or 0 
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Unsigned Series-Parallel Multiplication Hardware 
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Steps for Unsigned Multiplication Hardware Use 

1. Clear product shift register p. 

2. Initialize multiplier digit number 𝑗 = 0. 

3. Form the partial product 𝑥𝑦𝑗. 

4. Add partial product to upper half of 𝑝. 

5. Increment 𝑗 = 𝑗 + 1, and if 𝑗 = 𝑚 go to step 8. 

6. Shift 𝑝 right one digit. 

7. Repeat from step 3. 

8. The 2m digit product is in the 𝑝 register 
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Fixed-Point Multiplication 

• Radix point is in fixed position of word 

▫ Right end for integer 

▫ Left end for a fraction 

• Overflow (integer) 

▫ Result is lower 𝑚 digits 

▫ Upper 𝑚 digits of 𝑝 contain non-zero entries 

• Accuracy loss (fraction) 

▫ Result is upper 𝑚 digits 

▫ Lower 𝑚 digits discarded (or rounded) 
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Signed Multiplication 

• Unsigned method 

▫ Negative operands can be complemented and 
magnitudes multiplied, product complemented if 
necessary 

 Sign of product easily computed by signs of 
operands 

• Direct method 

▫ Use b’s complement adder (discard carry out) and 
use sign extension for shifts 

▫ Add all partial products but subtract last partial 
product 

▫ Value 𝑥 = −𝑥𝑚−1𝑥
𝑚−1 +  𝑥𝑖𝑏

𝑖𝑚−1
𝑖=0  
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2’s Complement Signed Multiplier Hardware 
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Steps for Signed Multiplication Hardware Use  

1. Clear the bit counter and partial product 
accumulator register. 

2. Add the product (AND) of the multiplicand 
and rightmost multiplier bit. 

3. Shift accumulator and multiplier registers 
right one bit. 

4. Count the multiplier bit and repeat from 2 if 
count less than m-1. 

5. Subtract the product of the multiplicand and 
bit m-1 of the multiplier. 
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Note: bits of multiplier used at rate product bits produced 



2’s Complement Multiplication Examples 

 -5/8 =   1.011    6/8 =   0.110 

 6/8 =   0.110  -5/8 =   1.011 

pp0  00.000 pp0  00.110 

acc  00.0000 acc  00.0110 

pp1  11.011 pp1  00.110 

acc  11.10110 acc  00.10010 

pp2  11.011 pp2  00.000 

acc  11.100010 acc  00.010010 

pp3  00.000 pp3  11.010 

result  11.100010 result  11.100010 
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Digital Division 

• Dividend is dived by a divisor to get a quotient 
and a remainder 

• A 2𝑚 digit dividend divided by an 𝑚 digit divisor 
does not necessarily give an 𝑚 digit quotient and 
remainder 

▫ Divisor of 1 gives same size as dividend 

• Fraction division (𝐷/𝑑 both fractions) 

▫ 𝐷/𝑑 quotient is only a fraction if 𝐷 <  𝑑 

▫ Divide overflow occurs when 𝐷 ≥ 𝑑 

 Why? 
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Binary Division Hardware 
 • 2m bit dividend 

register 

• m bit divisor 

• m bit quotient 

• Divisor can be 
subtracted from 
dividend, or not 
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Integer Division Hardware Steps 

1. Put dividend in lower half of register and clear 
upper half. Put divisor in divisor register. 
Initialize quotient bit counter to zero. 

2. Shift dividend register left one bit. 

3. If difference positive, shift 1 into quotient and 
replace upper half of dividend by difference. If 
negative, shift 0 into quotient. 

4. If fewer than m quotient bits, repeat from 2. 

5. m bit quotient is an integer, and an m bit 
integer remainder is in upper half of dividend 
register 
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Fraction Division Hardware Steps 

1. Put dividend in upper half of dividend register 
and clear lower half. Put divisor in divisor 
register. Initialize quotient bit counter to zero. 

2. If difference positive, report divide overflow. 

3. Shift dividend register left one bit. 

4. If difference positive, shift 1 into quotient and 
replace upper part of dividend by difference. If 
negative, shift 0 into the quotient. 

5. If fewer than m quotient bits, repeat from 3. 

6. m bit quotient has binary point at the left, and 
remainder is in upper part of dividend register. 
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Binary Division Example 
Divide D=45 by d=6 
D   000000 101101 

-d   111010 q 0 

D   000001 01101- 

-d   111010 

D-d (diff -)   111011 01101- q 0 

D   000010 1101-- 

-d   111010 

D-d (diff -)   111101 1101-- q 00 

D    000101 101--- 

-d   111010 

D-d (diff -)   111111 101--- q 000 

D   001011 01---- 

-d   111010 

D-d (diff +) 1 000101 01---- q 0001 

D   001010 1----- 

-d   111010 

D-d (diff +) 1 000100 1-----   q 00011 

D   001001 ------ 

-d   111010 

D-d (diff +) 1 000011 ------ q 000111 

remainder   000011 
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Fixed-Point Arithmetic Highlights 

• Digitwise addition with single-bit carry between 
digits is basis for add/sub 

• Carry lookahead is the principal technique for 
fast add/sub 

▫ Carry propagation is slow in ripple-adder 

• Fixed-point mult/sub is built on repeated 
add/sub 

▫ Replicated hardware for parallel computation 

▫ Repetitive calculations done with single 
adder/subtracter with a register for immediate 
result 
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Branching on Arithmetic Conditions 

• ALU operations produce result as well as carry 
from left bit and overflow indicator 

• 3 common methods for using outcome of 
compare (subtraction) for a branch condition 

1. Do compare in branch instruction  

2. Set special condition code bits and test them at 
in branch instruction 

3. Set general register to comparison outcome and 
branch on this logical value 

37 



Considerations for Branch Alternatives 

• Comparison in branch 
▫ Increased branch instruction length 

 Must specify 2 operands to be compared, branch target, and 
branch condition (possibly place for link) 

▫ Computations before branch decision 
 ALU must be used and output tested 

 Longer instruction time 
 Need for more branch delay slots in pipeline 

• Condition codes 
▫ Extra processor state set and overwritten by many 

instructions 
 Must be used before being set again 
 Introduces hazards in pipelined design 

▫ Must be saved/restored during exception handling 
• General register 

▫ Large register used for single true/false comparison value 
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Motorola 68000 CC Use 

• HLL statement 

▫ if(A > B) then C = D 

• MC68000 assembly 
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MOVE.W A, D0 

CMP.W B D0 

BLE Over 

MOVE.W D, C 

Over: … 

Actually test less than 
equal rather than 
greater than for  fall 
through on A > B 



ALU Logical Shift/Rotate 

• Useful for isolating bit fields from words 

▫ Masking operation (e.g. extracting opcode bits from an 
instruction) 

• Rotate right is same as rotate left but with differing 
shift counts 

• Right shifts must handle both signed and unsigned 

• Left shifts only need zero fill 

• Shift timing 

▫ Execution depends on shift count – repeated single bit 
shift 

▫ Fast (constant time) shifts – done with barrel shifter 
(important for pipelining) 
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Crossbar Barrel Rotator 

• 2 gate delay for 
any shift 

• Each output line is 
an effective n-way 
multiplexer for 
shifts up to n bits 

• 𝑛2 tri-states 
needed 

• How large is the 
decoder for 32 bit 
word? 

41 



Elements of an ALU 
• Arithmetic hardware 

▫ Conditions codes may be produced 
• Controller for multi-step operations (e.g. series parallel multiply) 
• Shifter usually separate unit (many gates for speed) 
• Logic operations typically simple 
• Multiplexors select appropriate result and conditions codes 
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Floating Point (FP) Representations 

• Decimal scientific notation (e.g. −2.72 × 10−2) 

▫ Sign (+/-) 

▫ Significand (2.72) 

▫ Exponent (-2) 

• With fixed radix position, a separate scale factor 
𝑒 is assumed for number 𝑓 × 2𝑒 

▫ Addition/Subtraction simple (same scale) 

 𝑓 × 2𝑒 + g × 2𝑒 = 𝑓 + 𝑔 × 2𝑒 

▫ Multiplication/Divide more complex 

 𝑓 × 2𝑒 𝑓 × 2𝑒 = 𝑓𝑔 × 22𝑒 

 𝑓 × 2𝑒 ÷ 𝑓 × 2𝑒 = 𝑓 ÷ 𝑔 
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Floating Point Word 

 

 

 

 

 

• 𝑠 = sign 

• 𝑒 = exponent 

• 𝑓 = significand 

▫ Typically will be a fraction 
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Signs in FP Numbers 

• Both significand and exponent have sign 

• Significand is commonly represented by sign-
magnitude 

• Sign placed at left instead of with f so left most 
bit is always the sign bit 

• Exponent is represented by bias (excess) 

▫ −𝑒𝑚𝑖𝑛≤ 𝑒 ≤ 𝑒𝑚𝑎𝑥,   𝑒𝑚𝑖𝑛,  𝑒𝑚𝑎𝑥> 0 

▫  𝑒 =  𝑒𝑚𝑖𝑛+𝑒 

▫ Positive exponent is helpful for comparison 
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Exponent Base and FP Range 

• FP format with 24 of 32 bits for significand has 7 
bits for exponent  

▫ Magnitude of a number x is in range 2−64 ≤ 𝑥 ≤
264 (assuming base 2) 

▫ In order to have increased exponent range, bits 
taken from significand resulting in loss of 
accuracy 

• IBM used base 16 for exponent for increased 
range in 360/370 series 
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Normalized FP 

• Multiple representations of a FP exist 

▫ 𝑓2 = 2𝑑𝑓1define two fractions and 𝑒2 = 𝑒1 − 𝑑 

▫ (s, 𝑓1, 𝑒1) = (s, 𝑓2, 𝑒2) 

▫ E.g. .819 × 103 =  .0819 × 104 

• Normalized FP has leftmost signifcand digit 
non-zero (exponent as small as possible) 

▫ Zero handled separately as all 0 because it does 
not fit rule 

• Base 2 has a hidden bit 

▫ Left most bit always = 1 therefore not necessary to 
waste space  
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Comparison of Normalized FP 

• Examining normalized FP word like an integer 

▫ Exponent field to left of significand field means an 
exponent unit is greater than a significand unit 

▫ Larger exponent field is greater than smaller 
exponent field 

▫ Significand ordering same as integer for fixed 
exponent 

• FP numbers can be compared as if they were 
integers 
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IEEE FP Standards 

• Single Precision (32-bits) 

 

 

• Double precision (64-bits) 

 

 

• Exponent bias (127 for SP, 1023 DP) 

• Special numbers 

▫ All zero number is normalized 0 

▫ SP: 255 biased exponent indicate infinity or NaN  

 Non a number (NaN) e.g. 0/0 
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Decimal FP Add/Sub Examples 

Operands Alignment Normalize & Round 

6.144  102 0.06144  104 1.003644  105 

+ 9.975  104 + 9.97500  104 + 0.000500  105 

10.03644  104 1.004     105 
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Operands Alignment Normalize & Round 

1.076  10-7 1.0760  10-7 7.7300  10-9 

- 9.987  10-8 - 0.9987  10-7 + 0.0005  10-9 

0.0773  10-7 7.730   10-9 



Floating Add (FA) Floating Sub (FS) 

• Add/subtract 𝑠1, 𝑓1, 𝑒1  and s2, 𝑓2, 𝑒2  

1. Unpack (s, e, f); handle special operands 
2. Shift fraction of # with smaller exponent right 

by |e1-e2| bits 
3. Set result exponent er = max(e1, e2) 
4. For FA & s1=s2 or FS & s1s2, add significands, 

otherwise subtract them 
5. Count lead zeros, z; carry can make z=-1; shift 

left z bits or right 1 bit if z=-1 
6. Round result, shift right & adjust z if round OV 
7. 𝑒𝑟 =  𝑒𝑟 − 𝑧; check over- or underflow; bias & 

pack 
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FP Add/Sub Hardware 

• Adders for 
exponents and 
significands 

• Shifters for 
alignment and 
normalize 

• Multiplexers for 
exponent and 
swap of 
significands 

• Lead zeros 
counter 
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Decimal FP Mult/Div Examples 

• Multiply fractions and add exponents 

 

 

 

 

 

• Divide fractions and subtract exponents 
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Operands Normalize & Round 

-0.1403  10-3 -0.4238463  102 

 +0.3031  10+6 -0.00005    102 

-0.04238463  10-3+6 -0.4238     102 

Operands Normalize & Round 

-0.9325  10+2 +0.9306387  109 

 +0.1002  10-6 +0.00005    109 

+9.306387  102-(-6) +0.9306     109 



Floating Multiply Steps 

• Multiply 𝑠𝑟  𝑓𝑟 , 𝑒𝑟 = 𝑠1, 𝑓1, 𝑒1 × s2, 𝑓2, 𝑒2  

1. Unpack (𝑠, 𝑒, 𝑓); handle special operands 

2. Compute 𝑠𝑟 =  𝑠1 ⊕ 𝑠2; 𝑒𝑟 =  𝑒1 + 𝑒2; 
𝑓𝑟 =  𝑓1 × 𝑓2 

3. If necessary, normalize by 1 left shift & subtract 
1 from 𝑒𝑟; round & shift right if round overflow 
(OV) 

4. Handle overflow for exponent too positive and 
underflow for exponent too negative 

5. Pack result, encoding or reporting exceptions 
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Floating Divide Steps 

• Multiply 𝑠𝑟  𝑓𝑟 , 𝑒𝑟 = 𝑠1, 𝑓1, 𝑒1 ÷ s2, 𝑓2, 𝑒2  

1. Unpack (𝑠, 𝑒, 𝑓); handle special operands 

2. Compute 𝑠𝑟 =  𝑠1 ⊕ 𝑠2; 𝑒𝑟 =  𝑒1 − 𝑒2; 
𝑓𝑟 =  𝑓1 ÷ 𝑓2 

3. If necessary, normalize by 1 right shift & add 1 
to 𝑒𝑟; round & shift right if round OV 

4. Handle overflow for exponent too positive and 
underflow for exponent too negative 

5. Pack result, encoding or reporting exceptions 

 

55 



FP Highlights 
• FP generally have sign-magnitude significand and 

biased exponent representation 
▫ Exponent base is implicit 

• FP Standards must specify the base, representation, 
and bit widths 

• Normalization eliminates multiple representations 
of the same value for simple comparisons and 
arithmetic 

• Arithmetic is composed of multiple fixed point 
operations on exponents and significands 

• FA/FS are more difficult than mult/div because of 
the required exponent comparison and shifting to 
line up radix points 
▫ Mult/div requires a max of 1-bit shift of significand to 

normalize 
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Chapter 6 Summary 

• Digital number representations and algebraic 
tools for the study of arithmetic 

• Complement representation for addition of 
signed numbers 

• Fast addition by large base & carry lookahead 

• Fixed point multiply and divide overview 

• Non-numeric aspects of ALU design 

• Floating point number representations 

• Procedures and hardware for float add & sub 

• Floating multiply and divide procedures 
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Booth Recoding and Similar Methods 

• Forms the basis for a number of signed multiplication 
algorithms 

• Based upon recoding the multiplier, y, to a recoded 
value, z. 

• The multiplicand remains unchanged. 

• Uses signed digit (SD) encoding: 

• Each digit can assume three values instead of just 2: 

▫ +1, 0, and -1,  

▫ encoded as 1,  0, and 1.  

▫ Known as signed digit (SD) notation. 



A 2’s Complement Integer’s Value can be Represented as: 

value(y)  ym 12
m1

 Y
i
2
i
           (Eq 6.26)

i0

m2



This means that the value can be computed by adding the weighted 
values of all the digits except the most significant, and subtracting that 
digit. 

 



Example: Represent -5 in SD Notation 

5  1011 in 2' s Complement Notation

1011 1 011 8 0  21 5 in SD Notation



The Booth Algorithm (Sometimes Known as "Skipping Over 1's.) 



Consider -1 =  1111. In SD Notation this can

be represented as 0001 

The Booth method is: 

1. Working from lsb to msb, replace each 0 digit of the original number 

with 0 in the recoded number until a 1 is encountered. 

2. When a 1 is encountered, insert a 1 in that position in the recoded 

number, and skip over any succeeding 1's until a 0 is encountered. 

3. Replace that 0 with a 1. If you encounter the msb without 

encountering a 0, stop and do nothing. 



Example of Booth Recoding 

0011 1101 1001 512  256 128  64 16  8  1 985

                   

0100 01 10 1 011  1024 64  32  8 2 1 985



Tbl 6.4  Booth Recoding Table 

y
i
y
i1

z
i
Value Situation

0 0 0 0 String of 0's

0 1 1 1 End of string of 1's

1 0 1 1 Begin string of 1's

1 1 0 0 String of 1's

Consider pairs of numbers, yi, yi-1. Recoded value is zi. 

Algorithm can be done in parallel. 
Examine the example of multiplication 6.11 in text. 



Recoding using Bit Pair Recoding 

• Booth method may actually increase number of 
multiplies. 

• Consider pairs of digits, and recode each pair 
into 1 digit. 

• Derive Table 6.5, pg. 279 on the blackboard to 
show how bit pair recoding works. 

• Demonstrate Example 6.13 on the blackboard as 
an example of multiplication using bit pair 
recoding. 

• There are many variants on this approach. 



Table 6.5 Radix-4 Booth Encoding (Bit-Pair Encoding) 


