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Chapter 6 

• Number Systems and Radix Conversion 

• Fixed-Point Arithmetic 

• Seminumeric Aspects of ALU Design 

• Floating-Point Arithmetic 
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Outline 

• Number Systems 

• Fixed Point Arithmetic 
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Digital Number Systems 

• Expanded generalization of lecture 07 topics 

 

• Number systems have a base (radix) b 

• Positional notation of an m digit base b number 

▫ 𝑥 = 𝑥𝑚;1𝑥𝑚;2…𝑥1𝑥0 

▫ Value 𝑥 =  𝑥𝑖𝑏
𝑖𝑚;1

𝑖<0  
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Range of Representation 

• Largest number has all digits equal to largest 
possible base 𝑏 digit, (𝑏 − 1) 

• Max value in closed form for unsigned m digit 
base b number 

▫ 𝑥max =  (𝑏 − 1)𝑏𝑖𝑚;1
𝑖<0  

▫ 𝑥max = (𝑏 − 1) 𝑏𝑖 =𝑚;1
𝑖<0 (𝑏 − 1)

𝑏𝑚;1

𝑏;1
 

▫ 𝑥max = 𝑏
𝑚 − 1 

 

• Sum of geometric series 

▫  𝑏𝑖 =𝑚;1
𝑖<0

𝑏𝑚;1

𝑏;1
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Radix Conversion 

• Conversion between different number systems 
involves computation 
▫ Base of calculation is c (10 typical for us humans) 
▫ Other base is b 

• Calculation based on division 

▫ For integers a and d, exist integers q and r such 
that 

▫ 𝑎 = 𝑞 ∙ 𝑑 + 𝑟 
 0 ≤ 𝑟 ≤ 𝑏 − 1 

• Notation: 

▫ 𝑞 = 𝑎/𝑑  
▫ 𝑟 = 𝑎 mod 𝑏 (mod is remainder) 
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Digit Symbol Correspondence Between Bases 

• Each base (b or c) has different symbols to 
represent digits 

• Lookup table given for correspondence between 
symbols 

▫ Provides mapping between base b and base c 
symbols 

▫ May be more than one digit required to represent 
a larger base symbol 
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Base 12 0 1 2 3 4 5 6 7 8 9 A B 

Base 3 0 1 2 10 11 12 20 21 22 100 101 102 



Base Conversion 1 
• Convert base b integer to 

calculator base c 

1. Start with base b  

▫ 𝑥 = 𝑥𝑚;1𝑥𝑚;2…𝑥1𝑥0 

2. Set 𝑥 = 0 in base c 

3. Left to right, get next symbol 
𝑥𝑖 

4. Lookup base c number 𝐷𝑖 
for symbol 𝑥𝑖 

5. Calculate in base c 

▫ 𝑥 = 𝑥 ∙ 𝑏 + 𝐷𝑖 
6. Repeat step 3 until no more 

digits 

 

• Example: 

• Convert 0x3AF to base 10 

▫ 𝑥 = 0 

▫ 𝑥 =  16 ∙ 0 +  3 =  3 

▫ 𝑥 =  16 ∙ 3 + 10 (= 𝐴)  = 58 

▫ 𝑥 =  16 ∙ 58 + 15 (= 𝐹) = 943 

• 0x3AF = 94310 
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Base Conversion 2 
• Convert calculator base c 

integer to base b 

1. Start with base c integer 

▫ 𝑥 = 𝑥𝑚;1𝑥𝑚;2…𝑥1𝑥0 

2. Initialize  

▫ 𝑖 = 0  

▫ 𝑣 = 𝑥  

▫ Produce digits right to left 

3. Set  

▫ 𝐷𝑖 = 𝑣 mod 𝑏 

▫ 𝑣 =  𝑣/𝑏   

▫ Lookup 𝐷𝑖 to get 𝑥𝑖 
4. Set 

▫ 𝑖 = 𝑖 + 1 

▫ Repeat step 3 if 𝑣 ≠ 0 

 

• Example: 

• Convert 358710   to base 12 

▫
3587

12
= 298 𝑟𝑒𝑚 = 11    𝑥0 = 𝐵 

▫
298

12
= 24 𝑟𝑒𝑚 = 10   𝑥1 = 𝐴 

▫
24

12
= 2 𝑟𝑒𝑚 = 0   𝑥2 = 0 

▫
2

12
= 0 𝑟𝑒𝑚 = 2   𝑥3 = 2 

• 3587=20AB12 
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Fractions and Fixed Point Numbers 

• Base b fraction 

▫ f= .f-1 f-2… f-m 

▫ Value is integer f-1 f-2… f-m divided by 𝑏𝑚  

• Mixed fixed point number 

▫ 𝑥𝑛;1𝑥𝑛;2…𝑥1𝑥0. 𝑥;1𝑥;2…𝑥;𝑚 

▫ Value of n+m digit integer 

 𝑥𝑛;1𝑥𝑛;2…𝑥1𝑥0𝑥;1𝑥;2…𝑥;𝑚 

▫ Divided by 𝑏𝑚 

• Moving radix point one place left divides by b 

▫ Right shift for fixed radix point position 

• Moving radix point one place right multiplies by b 

▫ Left Shift for fixed radix point position  
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Converting Fractions to Calculator Base 

• Can use integer conversion 
and divide result by 𝑏𝑚 

• Alternative algorithm 

1. Let base b number be  

▫ 𝑓 =. 𝑓;1𝑓;2…𝑓;𝑚 

2. Initialize  

▫ 𝑓 = 0.0 

▫ 𝑖 = −𝑚 

3. Find base c equivalent of 𝐷 
of digit 𝑓𝑖 

4. Update 

▫ 𝑓 =
𝑓:𝐷

𝑏
 

▫ 𝑖 = 𝑖 + 1 

5. If 𝑖 = 0, result is 𝑓; otherwise 
repeat step 3 

• Example 

• Convert 0.4138 to base 10 

▫ 𝑓 =
0:3

8
= 0.375 

▫ 𝑓 =
0.375:1

8
 = 0.171875 

▫ 𝑓 =
0.171875:4

8
= 0.521484375 

• Notice: there will be precision 
errors due to numerical round-
off 

▫ Only a fixed number of digits 
can be retained 
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Converting Fractions to Base b 

1. Start with fraction f in base c 

▫ 𝑓 =. 𝑓;1𝑓;2…𝑓;𝑚 

2. Initialize  

▫ 𝑣 = 𝑓 

▫ 𝑖 = 1 

3. Set 

▫ 𝐷;𝑖 = 𝑏 ∙ 𝑣  

▫ 𝑣 = 𝑏 ∙ 𝑣-𝐷;𝑖 

▫ Get base b digit 𝑓;𝑖  for 𝐷;𝑖  
with table 

4. Increment  

▫ 𝑖 = 𝑖 + 1 

▫ Repeat Step 3 until 

 𝑣 = 0 

 Enough digits generated 

• Example 

• Convert 0.3110 to base 8 

▫ 0.31 × 8 = 2.48  𝑓;1 = 2 

▫ 0.48 × 8 = 3.84  𝑓;2 = 3 

▫ 0.84 × 8 = 6.72  𝑓;3 = 6 

• 𝑓 = 0.2368 

• Notice: 

▫ Since 83 > 102, 0.2368 has 
more accuracy than 0.3110 
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Digit Grouping for Related Bases 

• Base b = ck 

• Can convert between bases by replacing single 
digit symbol in base b with corresponding digits 
in base c 

 

• (Our favorite method to change base e.g. binary 
to hex) 

• Examples 

▫ 1021304 = 10 21 304 = 0x49C 
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Negative Numbers and Complements 

• Two complement operations defined 
• Two complement number systems 

▫ Represent both positive and negative numbers 

 
• Given m digit base b number x 
• Radix complement (b’s complement) 

▫ 𝑥𝑐 = 𝑏𝑚 − 𝑥  mod 𝑏𝑚 
▫ mod 𝑏𝑚 only has effect for x=0 

 What is radix complement of x = 0? 

• Diminished radix complement ((b-1)’s 
complement) 

▫ 𝑥 𝑐 = 𝑏
𝑚 − 1 − 𝑥 
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Complement Number Systems 

• Both positive and negative numbers represented 
in m digits 
▫ Range of m digit base b unsigned number: 

 0 ≤ 𝑥 ≤ 𝑏𝑚 − 1 

• First half of range used for positive and second 
half for negative numbers 
▫ Complement of number range 

 Positive: 0 to bm/2 
 Negative: bm/2 to bm-1 

▫ Radix complement has extra negative number for 
even b (think b=2) 

▫ Diminished radix complement has equal numbers 
of positive and negative representations 

15 



Utility of Complement System 

• Sign-magnitude system requires extra +/- 
symbols in addition to digits 

▫ Binary has easy mapping 

 + := 0 

 - := 1 

▫ If b > 2 a whole digit for the 2 +/- symbols is 
wasteful 

 

• Easy to do signed addition and subtraction using 
the complement number systems 
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Complement Representation of Negative Numbers 

 

 

 

 

 

 

• Radix complement has one more negative than 
positive for even base b 

• Diminished radix complement has 2 zeros but 
same number of positive and negative values 
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Radix Complement Diminished Radix Complement 

Number Representation Number Representation 

0 0 0 0 or 𝑏𝑚 − 1 

0 < 𝑥 < 𝑏𝑚/2 𝑥 0 < 𝑥 < 𝑏𝑚/2 𝑥 

−𝑏𝑚/2 ≤ 𝑥 < 0 𝑥 𝑐 = 𝑏𝑚 − 𝑥  −𝑏𝑚/2 ≤ 𝑥 < 0 𝑥 𝑐 = 𝑏𝑚 − 1 − 𝑥  



Base 2 Complement Representations 

 

 

 

 

 

 

• 1’s complement 255 (or -0) 

▫ 255 = 1111 11112 

• 2’s complement  

▫ −128 = 1000 00002 is valid 

▫ Negation gives overflow 
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8 Bit Radix (2’s)Complement 8 bit Diminished Radix (1’s) 
Complement 

Number Representation Number Representation 

0 0 0 0 or 255 

0 < 𝑥 < 128 𝑥 0 < 𝑥 < 128 𝑥 

−128 ≤ 𝑥 < 0 256 − 𝑥  −127 ≤ 𝑥 < 0 256 − 1 − 𝑥  



Negation in Complement Systems 

• Negative of any m digit value is also m digits 

▫ Exception: -bm/2 

• Negative of any number is obtained by applying 
the b’s or (b-1)’s complement operation 

• The complement operations are related 

▫ 𝑥𝑐 = 𝑥 𝑐 + 1  mod 𝑏𝑚 

▫ Given one, easy to compute other 
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Digitwise Computation of Diminished Radix Complement 

• 𝑥 𝑐 = 𝑏𝑚 − 1 − 𝑥 

• 𝑥 𝑐 =  𝑏 − 1 𝑏𝑖 −𝑚;1
𝑖<0  𝑥𝑖 𝑏

𝑖𝑚;1
𝑖<0  

• 𝑥 𝑐 =  𝑏 − 1 − 𝑥𝑖 𝑏
𝑖𝑚;1

𝑖<0  

 

• Diminished radix number is an m digit base b 
number 

▫ Each digit is obtained (as diminished 
complement) from corresponding digit in x  
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Base 5 Complements 
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• Examples 

• 4’s complement of 2013415 

▫ 2431035 

• 5’s complement of 2013415  

▫ 2431035 + 1 = 2431045 

• 5’s complement of 444445  

▫ 000005 + 1 = 000015 

• 5’s complement of 000005  

▫ (444445 + 1) mod 55 = 000005 

 

Base 5 Digit 0 1 2 3 4 

4’s Comp. 4 3 2 1 0 



Complement Fractions 

• m digit fraction is same as m digit integer 
divided by bm,  
▫ The bm in complement definitions corresponds to 

1 for fractions 

• Radix complement of f = .f-1f-2...f-m  
▫ (1-x) mod 1 

 Where mod 1 means discard integer 

• The range of fractions is roughly -1/2 to +1/2 
• This can be inconvenient for a base other than 2 
• The b’s comp. of a mixed number 

▫ x = xm-1xm-2...x1x0.x-1x-2...x-n  = bm - x, 
▫ Both integer and fraction digits are subtracted 
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Scaling Complement Numbers 

• Dividing by b corresponds to moving radix point 
one place left 

▫ Shift number one place right 

• Multiplying by base b corresponds to moving 
radix point one place right (roughly) 

▫ Shift number one place left 

 

• Issues: 

▫ What is new left digit on right shift? 

▫ When does left shift overflow? 
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Right Shift for Divide 

• Positive number 𝑥 = 𝑥𝑚;1𝑥𝑚;2…𝑥1𝑥0 
▫ Zero fill: 𝑥/𝑏 = 0𝑥𝑚;1𝑥𝑚;2…𝑥1 

• Negative number 

▫ (b-1) file: 𝑥/𝑏 = (𝑏 − 1)𝑥𝑚;1𝑥𝑚;2…𝑥1 

 

• Fill rule for even b 

▫ Zero fill when 𝑥𝑚;1 < 𝑏/2 

▫ (b-1) fill when 𝑥𝑚;1 ≥ 𝑏/2 
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Left Shift for Multiply 

• Overflow can occur (loss of information) 

▫ Positive numbers 

 Any digit other than 0 shifts off left end 

 After shift, left-most digit makes number look 
negative (digit ≥ 𝑏/2 for even b) 

▫ Negative numbers 

 Any digit other than (b-1) shifts off left end 

 After shirt, left-most digit makes number look 
positive (digit < 𝑏/2 for even b) 
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Left Shift Examples 

• Non-overflow cases: 

▫ 7628 << 1 = 6208 ;  −14 ∗ 8 = −112 

▫ 0318 << 1 = 3108 ;  −25 ∗ 8 = −200 

• Overflow cases 

▫ 2418 << 1 = 4108 ; 2 ≠ 0 off left 

▫ 0418 << 1 = 4108 ; changes from + to – 

▫ 7138 << 1 = 1308 ;  changes from – to + 

▫ 6628 << 1 = 6208 ;  2 ≠ 7 off left 
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Fixed Point Addition and Subtraction 

• When radix point is in the same position for 
both operands 

▫ Add/Sub acts as if numbers were integers 

• Addition of signed numbers in radix 
complement system only needs an unsigned 
adder 

▫ Must design m digit base b unsigned adder 

• Radix complement signed addition theorem 

▫ s = rep(x) + rep(y) = rep(x+y) 

▫ rep(x) := b’s complement representation of x 

▫ Does not consider overflow 
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Unsigned Addition Hardware 
• Perform operation on each 

digit of m digit base b 
number 

• Each digit cell requires 
operands xj and yj as well 
as a carry in cj 

• Sum 

▫ 𝑠𝑗 = 𝑥𝑗 + 𝑦𝑗 + 𝑐𝑗  mod 𝑏 

• Carry-out 

▫ 𝑐𝑗 + 1 = (𝑥𝑗 + 𝑦𝑗 + 𝑐𝑗)/𝑏  

▫ All carries are less than 
equal to 1 regardless of b 

• Works for any fixed radix 
point location (e.g. 
fractions) 
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Unsigned Addition Example 
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• With fixed number of digits, overflow occurs on 
carry from leftmost digit 

• Carries are 0 or 1 in all cases 

• Addition is defined by a table of sum and carry 
for b2 digit pairs 

Op1 1 2 . 0 34 = 6.187510 

Op2 + 1 3 . 2 14 = 7.562510 

Carry 0 1 0 1 

Sum 3 1 . 3 04 = 13.75 

+ 0 1 2 3 

0 00 01 02 03 

1 01 02 03 10 

2 02 03 10 11 

3 03 10 11 12 

Base 4 addition table 



Adder Implementation Alternatives  

• For base b=2k, each digit is 
equivalent to k bits 

• Adder can be viewed as 
logic circuit with 2k+1 
inputs and k+1 outputs 
 

• Ripple carry adder 
▫ Choice of k affects 

computation delay 
▫ When 2 level logic is used 

what is max gate delay for 
m digit addition? 
 2m 
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s 

x y 

c0 c1 



Complement Subtracter 
• Subtraction in radix 

complement is addition with 
negated (complemented) 
second input 

▫ Must supply overflow 
detection 

• Radix complement is addition of 
1 to diminished radix 
complement 
(𝑥𝑐 = 𝑥 𝑐 + 1  mod 𝑏𝑚) 

• Easy to take diminished radix 
complement and use carry in of 
adder to supply +1 for radix 
complement 
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Overflow Detection  

• Occurs when adding number of like sign and the 
result seems to have opposite sign 

• For even b: sign determined by the leftmost digit 

▫ Overflow detector only requires 

 xm-1, ym-1, sm-1 
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Ripple-carry adder/subtracter 

XOR gates select y 
for addition or 
complement of y for 
subtraction in base 2 



Carry Lookahead 

• Speed of addition depends on carries 

▫ Carries need to propagate from lsb to msb 

• Two level logic for base b digit becomes complex 
quickly for increasing k (b=2k) 

▫ Length of carry chain divided by k 

• Need to compute carries quickly 

1. Determine if addition in position j generates a 
carry 

2. Determine if carry is propagated from input to 
output of digit j 
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Binary Generate and Propagate Signals 

• Generate: digit at position j will have a carry 

▫ 𝐺𝑗 = 𝑥𝑗𝑦𝑗 
• Propagate: carry in passes through to carry out 

▫ 𝑃𝑗 = 𝑥𝑗 + 𝑦𝑗 
• Carry is defined as 1 if the sum generates a carry 

or if a carry is propagated  

▫ 𝑐𝑗 + 1 = 𝐺𝑗 + 𝑃𝑗𝑐𝑗 
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Carry Lookahead Speed 

• 4 bit carry equations 

▫ 𝑐1 =  𝐺0 +  𝑃0𝑐0 

▫ 𝑐2 =  𝐺1 +  𝑃1𝐺0 +  𝑃1𝑃0𝑐0 

▫ 𝑐3 =  𝐺2 +  𝑃2𝐺1 +  𝑃2𝑃1𝐺0 +  𝑃2𝑃1𝑃0𝑐0 

▫ 𝑐4 =  𝐺3 +  𝑃3𝐺2 +  𝑃3𝑃2𝐺1 +  𝑃3𝑃2𝑃1𝐺0 +  𝑃3𝑃2𝑃1𝑃0𝑐0 

• Carry lookahead delay 

▫ One gate delay for to calculate G or P 

▫ 2 levels of gates for a carry 

▫ 2 gate delays for full adder (sj) 

• The number of OR gate inputs (terms) and AND 
gate inputs (literals in a term) grows as the number 
of carries generated by lookahead 
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Recursive Carry Lookahead 
• Apply lookahead logic to groups of digits 
• Group of 4 digits (level 1) 

▫ Group generate: 

 𝐺10 =  𝐺3 +  𝑃3𝐺2 +  𝑃3𝑃2𝐺1 +  𝑃3𝑃2𝑃1𝐺0 
▫ Group propagate: 

 𝑃10 =  𝑃3𝑃2𝑃1𝑃0 

▫ Can further define level 2 signals which are groups of 
level 1 groups  

• Group k terms at each level  logkm levels for m bit 
addition 
▫ Each level introduces 2 more gate delays 
▫ k chosen to trade-off reduced delay and complexity of 

G and P logic 
 Typically 𝑘 ≥ 4 however structure easier to see for k=2 
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Carry Lookahead Adder Diagram 

• Group size k=2 
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Digital Multiplication 

• Based on digital addition 

▫ Generate partial products (from each digit) and 
sum for the complete product 

▫ “Pencil and paper addition” 

38 



Accumulated Partial Product 

• Partial products accumulated rather than 
collected and added in the end 
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1. for i := 0 step 1 until 2m-1 

2.  pi := 0; 

3. for j := 0 step 1 until m-1 

4.  begin 

5.   c := 0; 

6.   for i := 0 step 1 until m-1 

7.    begin 

8.     pj+i := (pj+i + xi yj + c) mod b; 

9.     c := (pj+i + xi yj + c)/b; 

10.    end; 

11.   pj+m := c; 

12.  end; c is a single base b digit  
(no longer 0, 1 as in addition) 



Parallel Array Multiplier 
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Parallel Array Multiplier Operation 

• Each box in array does the base b digit 
calculations 

▫ 𝑝𝑘(out):=  (𝑝𝑘(in) +  𝑥𝑦 +  𝑐(in)) mod 𝑏 

▫ 𝑐 (out): =  (𝑝𝑘(in) +  𝑥𝑦 +  𝑐)/𝑏  

• Inputs and outputs of boxes are single base b 
digits (including carries) 

• Worst case path from input to output is about 
6m gates if each box is a 2 level circuit 

▫ In binary, each box is a full adder with an extra 
AND gate to compute xy 
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