CPE300: Digital System Architecture and Design

Fall 2011 MW 17:30-18:45 CBC C316

Arithmetic Unit 10102011

http://www.egr.unlv.edu/~b1morris/cpe300/

Chapter 6

- Number Systems and Radix Conversion
- Fixed-Point Arithmetic
- Seminumeric Aspects of ALU Design
- Floating-Point Arithmetic

Outline

- Number Systems
- Fixed Point Arithmetic

Digital Number Systems

- Expanded generalization of lecture 07 topics
- Number systems have a base (radix) b
- Positional notation of an m digit base b number

•
$$x = x_{m-1}x_{m-2} \dots x_1 x_0$$

• Value $(x) = \sum_{i=0}^{m-1} x_i b^i$

Range of Representation

- Largest number has all digits equal to largest possible base *b* digit, (*b* − 1)
- Max value in closed form for unsigned m digit base b number

•
$$x_{\max} = \sum_{i=0}^{m-1} (b-1) b^i$$

• $x_{\max} = (b-1) \sum_{i=0}^{m-1} b^i = (b-1) \left(\frac{b^{m-1}}{b-1}\right)$
• $x_{\max} = b^m - 1$

• Sum of geometric series
•
$$\sum_{i=0}^{m-1} b^i = \left(\frac{b^m - 1}{b - 1}\right)$$

Radix Conversion

- Conversion between different number systems involves computation
 - Base of calculation is c (10 typical for us humans)
 - Other base is b
- Calculation based on division
 - For integers a and d, exist integers q and r such that
 - $\bullet \ a = q \cdot d + r$

•
$$0 \le r \le b - 1$$

• Notation:

$$\ q = \lfloor a/d \rfloor$$

• $r = a \mod b \pmod{a}$ (mod is remainder)

Digit Symbol Correspondence Between Bases

- Each base (b or c) has different symbols to represent digits
- Lookup table given for correspondence between symbols
 - Provides mapping between base b and base c symbols
 - May be more than one digit required to represent a larger base symbol

Base 12	0	1	2	3	4	5	6	7	8	9	A	В
Base 3	0	1	2	10	11	12	20	21	22	100	101	102

Base Conversion 1

- Convert base b integer to calculator base c
- 1. Start with base b

$$x = x_{m-1}x_{m-2} \dots x_1 x_0$$

- 2. Set x = 0 in base c
- 3. Left to right, get next symbol x_i
- 4. Lookup base c number D_i for symbol x_i
- 5. Calculate in base c
 - $x = x \cdot b + Di$
- 6. Repeat step 3 until no more digits

- Example:
- Convert 0x3AF to base 10

$$x = 16 \cdot 0 + 3 = 3$$

$$x = 16 \cdot 3 + 10 (= A) = 58$$

•
$$x = 16 \cdot 58 + 15 (= F) = 943$$

•
$$0x3AF = 943_{10}$$

Base Conversion 2

- Convert calculator base c integer to base b
- 1. Start with base c integer
 - $x = x_{m-1}x_{m-2} \dots x_1 x_0$
- 2. Initialize
 - i = 0
 - v = x
- Produce digits right to left3. Set
 - $D_i = v \bmod b$
 - $v = \lfloor v/b \rfloor$
 - Lookup D_i to get x_i
- 4. Set
 - *i* = *i* + 1
 - Repeat step 3 if $v \neq 0$

- Example:
- Convert 3587₁₀ to base 12 • $\frac{3587}{12} = 298 (rem = 11) \Rightarrow x_0 = B$ • $\frac{298}{12} = 24 (rem = 10) \Rightarrow x_1 = A$ • $\frac{24}{12} = 2 (rem = 0) \Rightarrow x_2 = 0$ • $\frac{2}{12} = 0 (rem = 2) \Rightarrow x_3 = 2$

Fractions and Fixed Point Numbers

- Base b fraction
 - $f=.f_{-1}f_{-2}...f_{-m}$
 - Value is integer $f_{-1} f_{-2} \dots f_{-m}$ divided by b^m
- Mixed fixed point number
 - $x_{n-1}x_{n-2} \dots x_1 x_0 x_{-1} x_{-2} \dots x_{-m}$
 - Value of n+m digit integer
 - $x_{n-1}x_{n-2} \dots x_1x_0x_{-1}x_{-2} \dots x_{-m}$
 - Divided by b^m
- Moving radix point one place left divides by b
 - Right shift for fixed radix point position
- Moving radix point one place right multiplies by b
 - Left Shift for fixed radix point position

Converting Fractions to Calculator Base

- Can use integer conversion and divide result by *b*^{*m*}
- Alternative algorithm
- 1. Let base b number be
 - $f = f_{-1}f_{-2}\dots f_{-m}$
- 2. Initialize

•
$$i = -m$$

- 3. Find base c equivalent of *D* of digit f_i
- 4. Update

•
$$f = \frac{f+D}{b}$$

•
$$i = i + 1$$

5. If i = 0, result is f; otherwise repeat step 3

- Example
- Convert 0.413₈ to base 10

•
$$f = \frac{0+3}{8} = 0.375$$

• $f = \frac{(0.375+1)}{8} = 0.171875$
• $f = \frac{0.171875+4}{8} = 0.521484375$

- Notice: there will be precision errors due to numerical roundoff
 - Only a fixed number of digits can be retained

Converting Fractions to Base b

- **1.** Start with fraction f in base c
 - $f = f_{-1}f_{-2}\dots f_{-m}$
- 2. Initialize
 - v = f
 - *i* = 1
- 3. Set
 - $D_{-i} = \lfloor b \cdot \nu \rfloor$
 - $v = b \cdot v D_{-i}$
 - Get base b digit f_{-i} for D_{-i} with table
- 4. Increment
 - i = i + 1
 - Repeat Step 3 until
 - v = 0
 - Enough digits generated

- Example
- Convert 0.31_{10} to base 8
 - $0.31 \times 8 = 2.48 \Rightarrow f_{-1} = 2$
 - $0.48 \times 8 = 3.84 \Rightarrow f_{-2} = 3$
 - $0.84 \times 8 = 6.72 \Rightarrow f_{-3} = 6$
- $f = 0.236_8$
- Notice:
 - Since 8³ > 10², 0.236₈ has more accuracy than 0.31₁₀

Digit Grouping for Related Bases

- Base $b = c^k$
- Can convert between bases by replacing single digit symbol in base b with corresponding digits in base c
- (Our favorite method to change base e.g. binary to hex)
- Examples

• $102130_4 = 10\ 21\ 30_4 = 0x49C$

Negative Numbers and Complements

- Two complement operations defined
- Two complement number systems
 - Represent both positive and negative numbers
- Given m digit base b number x
- Radix complement (b's complement)

•
$$x^c = (b^m - x) \mod b^m$$

- mod b^m only has effect for x=0
 - What is radix complement of x = o?
- Diminished radix complement ((b-1)'s complement)

$$\hat{x}_c = b^m - 1 - x$$

Complement Number Systems

- Both positive and negative numbers represented in m digits
 - Range of m digit base b unsigned number:

• $0 \le x \le b^m - 1$

- First half of range used for positive and second half for negative numbers
 - Complement of number range
 - Positive: $o to b^m/2$
 - Negative: $b^m/2$ to b^m-1
 - Radix complement has extra negative number for even b (think b=2)
 - Diminished radix complement has equal numbers of positive and negative representations

Utility of Complement System

- Sign-magnitude system requires extra +/symbols in addition to digits
 - Binary has easy mapping
 - + := 0
 - - := 1
 - If b > 2 a whole digit for the 2 +/- symbols is wasteful
- Easy to do signed addition and subtraction using the complement number systems

Complement Representation of Negative Numbers

Radix Cor	nplement	Diminished Radix Complement				
Number	Representation	Number	Representation			
0	0	0	0 or $b^m - 1$			
$0 < x < b^m/2$	x	0 < x < bm/2	x			
$-b^m/2 \le x < 0$	$ x ^c = b^m - x $	$-bm/2 \le x < 0$	$\widehat{ x }^c = b^m - 1 - x $			

- Radix complement has one more negative than positive for even base b
- Diminished radix complement has 2 zeros but same number of positive and negative values

Base 2 Complement Representations

8 Bit Radix (2'	s)Complement	8 bit Diminished Radix (1's) Complement			
Number	Representation	Number	Representation		
0	0	0	0 or 255		
0 < x < 128	x	0 < x < 128	x		
$-128 \le x < 0$	256 - x	$-127 \le x < 0$	256 - 1 - x		

- 1's complement 255 (or -0)
 255 = 1111 1111₂
- 2's complement
 - $-128 = 1000\ 0000_2$ is valid
 - Negation gives overflow

Negation in Complement Systems

- Negative of any m digit value is also m digits
 Exception: -b^m/2
- Negative of any number is obtained by applying the b's or (b-1)'s complement operation
- The complement operations are related

•
$$x^c = (\hat{x}^c + 1) \mod b^m$$

Given one, easy to compute other

Digitwise Computation of Diminished Radix Complement

•
$$\hat{x}_c = bm - 1 - x$$

• $\hat{x}_c = \sum_{i=1}^{m-1} (b - 1)b_i = \sum_{i=1}^{m-$

•
$$\hat{x}_c = \sum_{i=0}^{m-1} (b-1)b^i - \sum_{i=0}^{m-1} (x_i)b^i$$

•
$$\hat{x}_c = \sum_{i=0}^{m-1} (b - 1 - x_i) b^i$$

- Diminished radix number is an m digit base b number
 - Each digit is obtained (as diminished complement) from corresponding digit in x

Base 5 Complements

Base 5 Digit	0	1	2	3	4
4's Comp.	4	3	2	1	0

- Examples
- 4's complement of 201341₅
 - [•] 243103₅
- 5's complement of 201341₅
 - $243103_5 + 1 = 243104_5$
- 5's complement of 44444₅
 00000₅ + 1 = 00001₅
- 5's complement of 000005
 (444445 + 1) mod 5⁵ = 000005

21

Complement Fractions

- m digit fraction is same as m digit integer divided by b^m,
 - The b^m in complement definitions corresponds to 1 for fractions
- Radix complement of $f = .f_{-1}f_{-2}...f_{-m}$
 - (1-x) mod 1
 - Where mod 1 means discard integer
- The range of fractions is roughly -1/2 to +1/2
- This can be inconvenient for a base other than 2
- The b's comp. of a mixed number
 - $\mathbf{x} = \mathbf{x}_{m-1}\mathbf{x}_{m-2}...\mathbf{x}_1\mathbf{x}_0.\mathbf{x}_{-1}\mathbf{x}_{-2}...\mathbf{x}_{-n} = \mathbf{b}^m \mathbf{x},$
 - Both integer and fraction digits are subtracted

Scaling Complement Numbers

- Dividing by b corresponds to moving radix point one place left
 - Shift number one place right
- Multiplying by base b corresponds to moving radix point one place right (roughly)
 - Shift number one place left
- Issues:
 - What is new left digit on right shift?
 - When does left shift overflow?

Right Shift for Divide

- Positive number $x = x_{m-1}x_{m-2} \dots x_1 x_0$ • Zero fill: $x/b = 0x_{m-1}x_{m-2} \dots x_1$
- Negative number
 - (b-1) file: $x/b = (b-1)x_{m-1}x_{m-2} \dots x_1$
- Fill rule for even b
 - Zero fill when $x_{m-1} < b/2$
 - (b-1) fill when $x_{m-1} \ge b/2$

Left Shift for Multiply

- Overflow can occur (loss of information)
 - Positive numbers
 - Any digit other than o shifts off left end
 - After shift, left-most digit makes number look negative (digit $\geq b/2$ for even b)
 - Negative numbers
 - Any digit other than (b-1) shifts off left end
 - After shirt, left-most digit makes number look positive (digit < *b*/2 for even b)

Left Shift Examples

- Non-overflow cases:
 - $762_8 << 1 = 620_8$; -14 * 8 = -112
 - $031_8 << 1 = 310_8$; -25 * 8 = -200
- Overflow cases
 - $\sim 241_8 << 1 = 410_8$
 - $\circ 041_8 << 1 = 410_8$
 - $\sim 713_8 << 1 = 130_8$
 - $662_8 << 1 = 620_8$; $2 \neq 7$ off left

- ; $2 \neq 0$ off left
 - ; changes from + to –
 - ; changes from to +

Fixed Point Addition and Subtraction

- When radix point is in the same position for both operands
 - Add/Sub acts as if numbers were integers
- Addition of signed numbers in radix complement system only needs an unsigned adder
 - Must design m digit base b unsigned adder
- Radix complement signed addition theorem
 - s = rep(x) + rep(y) = rep(x+y)
 - rep(x) := b's complement representation of x
 - Does not consider overflow

Unsigned Addition Hardware

- Perform operation on each digit of m digit base b number
- Each digit cell requires operands x_j and y_j as well as a carry in c_j
- Sum

•
$$s_j = (x_j + y_j + c_j) \mod b$$

- Carry-out
 - $c_{j+1} = \lfloor (x_j + yj + cj)/b \rfloor$
 - All carries are less than equal to 1 regardless of b
- Works for any fixed radix point location (e.g. fractions)

Unsigned Addition Example

Op1		1	2		0	34	=	6.1875 ₁₀
Op2	+	1	3		2	1_4	=	7.5625 ₁₀
Carry	0	1	0		1			
Sum		3	1	•	3	04	=	13.75

+	0	1	2	3
0	00	01	02	03
1	01	02	03	10
2	02	03	10	11
3	03	10	11	12

Base 4 addition table

- With fixed number of digits, overflow occurs on carry from leftmost digit
- Carries are 0 or 1 in all cases
- Addition is defined by a table of sum and carry for b² digit pairs

Adder Implementation Alternatives

- For base b=2^k, each digit is equivalent to k bits
- Adder can be viewed as logic circuit with 2k+1 inputs and k+1 outputs
- Ripple carry adder
 Choice of k affects computation delay
 - When 2 level logic is used what is max gate delay for m digit addition?

30

• 2m

Complement Subtracter

- Subtraction in radix complement is addition with negated (complemented) second input
 - Must supply overflow detection
- Radix complement is addition of 1 to diminished radix complement (x^c = (x^c + 1) mod b^m)
 - Easy to take diminished radix complement and use carry in of adder to supply +1 for radix complement

Overflow Detection

- Occurs when adding number of like sign and the result seems to have opposite sign
- For even b: sign determined by the leftmost digit
 Overflow detector only requires
 - x_{m-1}, y_{m-1}, s_{m-1}

XOR gates select y for addition or complement of y for subtraction in base 2

Carry Lookahead

- Speed of addition depends on carries
 Carries need to propagate from lsb to msb
- Two level logic for base b digit becomes complex quickly for increasing k (b=2^k)
 - Length of carry chain divided by k
- Need to compute carries quickly
 - 1. Determine if addition in position j generates a carry
 - 2. Determine if carry is propagated from input to output of digit j

Binary Generate and Propagate Signals

• Generate: digit at position j will have a carry

 $G_j = x_j y_j$

• Propagate: carry in passes through to carry out

$$P_j = x_j + y_j$$

• Carry is defined as 1 if the sum generates a carry or if a carry is propagated

$$\circ c_{j+1} = G_j + P_j c_j$$

Carry Lookahead Speed

- 4 bit carry equations
 - $c_1 = G_0 + P_0 c_0$
 - $c_2 = G_1 + P_1 G_0 + P_1 P_0 c_0$
 - $c_3 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0c_0$
 - $c_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0c_0$
- Carry lookahead delay
 - One gate delay for to calculate G or P
 - 2 levels of gates for a carry
 - 2 gate delays for full adder (s_i)
- The number of OR gate inputs (terms) and AND gate inputs (literals in a term) grows as the number of carries generated by lookahead

Recursive Carry Lookahead

- Apply lookahead logic to groups of digits
- Group of 4 digits (level 1)
 - Group generate:
 - $G_{0}^{1} = G_{3} + P_{3}G_{2} + P_{3}P_{2}G_{1} + P_{3}P_{2}P_{1}G_{0}$
 - Group propagate:
 - $P_0^1 = P_3 P_2 P_1 P_0$
 - Can further define level 2 signals which are groups of level 1 groups
- Group k terms at each level → log_km levels for m bit addition
 - Each level introduces 2 more gate delays
 - k chosen to trade-off reduced delay and complexity of G and P logic
 - Typically $k \ge 4$ however structure easier to see for k=2

Carry Lookahead Adder Diagram

• Group size k=2

Digital Multiplication

- Based on digital addition
 - Generate partial products (from each digit) and sum for the complete product

38

"Pencil and paper addition"

				<i>x</i> ₃	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₀	Multiplicand
				<i>Y</i> ₃	<i>Y</i> ₂	<i>Y</i> ₁	<i>Y</i> ₀	Multiplier
	617		$(xy_{0})_{4}$	$(xy_{0})_{3}$	$(xy_0)_2$	$(xy_{0})_{1}$	(<i>xy</i> ₀) ₀	pp ₀
		$(xy_{1})_{4}$	$(xy_{1})_{3}$	$(xy_1)_2$	$(xy_{1})_{1}$	$(xy_{1})_{0}$		pp ₁
	$(xy_{2})_{4}$	(<i>xy</i> ₂) ₃	$(xy_{2})_{2}$	$(xy_{2})_{1}$	$(xy_{2})_{0}$			pp ₂
(<i>xy</i> ₃) ₄	(<i>xy</i> ₃) ₃	$(xy_3)_2$	$(xy_{3})_{1}$	(<i>xy</i> ₃) ₀			3	pp ₃
p_7	p_6	p_5	p_4	p_3	p_2	p_1	p_0	

Accumulated Partial Product

 Partial products accumulated rather than collected and added in the end

```
for i := 0 step 1 until 2m-1
1.
2.
                     p_i := 0;
3.
          for j := 0 step 1 until m-1
4.
                     begin
5.
                               c := 0;
6.
                               for i := 0 step 1 until m-1
7.
                                          begin
8.
                                                    p_{j+i} := (p_{j+i} + x_i y_j + c) \mod b;
                                                    c := \lfloor (p_{i+i} + x_i y_i + c)/b \rfloor;
9.
10.
                                         end:
11.
                               p<sub>i+m</sub> := c;
12.
                     end;
                                                     c is a single base b digit
                                                     (no longer 0, 1 as in addition)
```

Parallel Array Multiplier

Parallel Array Multiplier Operation

- Each box in array does the base b digit calculations
 - $p_k(\text{out}) := (p_k(\text{in}) + xy + c(\text{in})) \mod b$
 - c (out): = $\lfloor (p_k(in) + xy + c)/b \rfloor$
- Inputs and outputs of boxes are single base b digits (including carries)
- Worst case path from input to output is about 6m gates if each box is a 2 level circuit
 - In binary, each box is a full adder with an extra AND gate to compute xy