
http://www.egr.unlv.edu/~b1morris/cpe300/

CPE300: Digital System

Architecture and Design
Fall 2011

MW 17:30-18:45 CBC C316

Arithmetic Unit

10102011

Chapter 6

• Number Systems and Radix Conversion

• Fixed-Point Arithmetic

• Seminumeric Aspects of ALU Design

• Floating-Point Arithmetic

2

Outline

• Number Systems

• Fixed Point Arithmetic

3

Digital Number Systems

• Expanded generalization of lecture 07 topics

• Number systems have a base (radix) b

• Positional notation of an m digit base b number

▫ 𝑥 = 𝑥𝑚;1𝑥𝑚;2…𝑥1𝑥0

▫ Value 𝑥 = 𝑥𝑖𝑏
𝑖𝑚;1

𝑖<0

4

Range of Representation

• Largest number has all digits equal to largest
possible base 𝑏 digit, (𝑏 − 1)

• Max value in closed form for unsigned m digit
base b number

▫ 𝑥max = (𝑏 − 1)𝑏𝑖𝑚;1
𝑖<0

▫ 𝑥max = (𝑏 − 1) 𝑏𝑖 =𝑚;1
𝑖<0 (𝑏 − 1)

𝑏𝑚;1

𝑏;1

▫ 𝑥max = 𝑏
𝑚 − 1

• Sum of geometric series

▫ 𝑏𝑖 =𝑚;1
𝑖<0

𝑏𝑚;1

𝑏;1

5

Radix Conversion

• Conversion between different number systems
involves computation
▫ Base of calculation is c (10 typical for us humans)
▫ Other base is b

• Calculation based on division

▫ For integers a and d, exist integers q and r such
that

▫ 𝑎 = 𝑞 ∙ 𝑑 + 𝑟
 0 ≤ 𝑟 ≤ 𝑏 − 1

• Notation:

▫ 𝑞 = 𝑎/𝑑
▫ 𝑟 = 𝑎 mod 𝑏 (mod is remainder)

6

Digit Symbol Correspondence Between Bases

• Each base (b or c) has different symbols to
represent digits

• Lookup table given for correspondence between
symbols

▫ Provides mapping between base b and base c
symbols

▫ May be more than one digit required to represent
a larger base symbol

7

Base 12 0 1 2 3 4 5 6 7 8 9 A B

Base 3 0 1 2 10 11 12 20 21 22 100 101 102

Base Conversion 1
• Convert base b integer to

calculator base c

1. Start with base b

▫ 𝑥 = 𝑥𝑚;1𝑥𝑚;2…𝑥1𝑥0

2. Set 𝑥 = 0 in base c

3. Left to right, get next symbol
𝑥𝑖

4. Lookup base c number 𝐷𝑖
for symbol 𝑥𝑖

5. Calculate in base c

▫ 𝑥 = 𝑥 ∙ 𝑏 + 𝐷𝑖
6. Repeat step 3 until no more

digits

• Example:

• Convert 0x3AF to base 10

▫ 𝑥 = 0

▫ 𝑥 = 16 ∙ 0 + 3 = 3

▫ 𝑥 = 16 ∙ 3 + 10 (= 𝐴) = 58

▫ 𝑥 = 16 ∙ 58 + 15 (= 𝐹) = 943

• 0x3AF = 94310

8

Base Conversion 2
• Convert calculator base c

integer to base b

1. Start with base c integer

▫ 𝑥 = 𝑥𝑚;1𝑥𝑚;2…𝑥1𝑥0

2. Initialize

▫ 𝑖 = 0

▫ 𝑣 = 𝑥

▫ Produce digits right to left

3. Set

▫ 𝐷𝑖 = 𝑣 mod 𝑏

▫ 𝑣 = 𝑣/𝑏

▫ Lookup 𝐷𝑖 to get 𝑥𝑖
4. Set

▫ 𝑖 = 𝑖 + 1

▫ Repeat step 3 if 𝑣 ≠ 0

• Example:

• Convert 358710 to base 12

▫
3587

12
= 298 𝑟𝑒𝑚 = 11 𝑥0 = 𝐵

▫
298

12
= 24 𝑟𝑒𝑚 = 10 𝑥1 = 𝐴

▫
24

12
= 2 𝑟𝑒𝑚 = 0 𝑥2 = 0

▫
2

12
= 0 𝑟𝑒𝑚 = 2 𝑥3 = 2

• 3587=20AB12

9

Fractions and Fixed Point Numbers

• Base b fraction

▫ f= .f-1 f-2… f-m

▫ Value is integer f-1 f-2… f-m divided by 𝑏𝑚

• Mixed fixed point number

▫ 𝑥𝑛;1𝑥𝑛;2…𝑥1𝑥0. 𝑥;1𝑥;2…𝑥;𝑚

▫ Value of n+m digit integer

 𝑥𝑛;1𝑥𝑛;2…𝑥1𝑥0𝑥;1𝑥;2…𝑥;𝑚

▫ Divided by 𝑏𝑚

• Moving radix point one place left divides by b

▫ Right shift for fixed radix point position

• Moving radix point one place right multiplies by b

▫ Left Shift for fixed radix point position

10

Converting Fractions to Calculator Base

• Can use integer conversion
and divide result by 𝑏𝑚

• Alternative algorithm

1. Let base b number be

▫ 𝑓 =. 𝑓;1𝑓;2…𝑓;𝑚

2. Initialize

▫ 𝑓 = 0.0

▫ 𝑖 = −𝑚

3. Find base c equivalent of 𝐷
of digit 𝑓𝑖

4. Update

▫ 𝑓 =
𝑓:𝐷

𝑏

▫ 𝑖 = 𝑖 + 1

5. If 𝑖 = 0, result is 𝑓; otherwise
repeat step 3

• Example

• Convert 0.4138 to base 10

▫ 𝑓 =
0:3

8
= 0.375

▫ 𝑓 =
0.375:1

8
 = 0.171875

▫ 𝑓 =
0.171875:4

8
= 0.521484375

• Notice: there will be precision
errors due to numerical round-
off

▫ Only a fixed number of digits
can be retained

11

Converting Fractions to Base b

1. Start with fraction f in base c

▫ 𝑓 =. 𝑓;1𝑓;2…𝑓;𝑚

2. Initialize

▫ 𝑣 = 𝑓

▫ 𝑖 = 1

3. Set

▫ 𝐷;𝑖 = 𝑏 ∙ 𝑣

▫ 𝑣 = 𝑏 ∙ 𝑣-𝐷;𝑖

▫ Get base b digit 𝑓;𝑖 for 𝐷;𝑖
with table

4. Increment

▫ 𝑖 = 𝑖 + 1

▫ Repeat Step 3 until

 𝑣 = 0

 Enough digits generated

• Example

• Convert 0.3110 to base 8

▫ 0.31 × 8 = 2.48 𝑓;1 = 2

▫ 0.48 × 8 = 3.84 𝑓;2 = 3

▫ 0.84 × 8 = 6.72 𝑓;3 = 6

• 𝑓 = 0.2368

• Notice:

▫ Since 83 > 102, 0.2368 has
more accuracy than 0.3110

12

Digit Grouping for Related Bases

• Base b = ck

• Can convert between bases by replacing single
digit symbol in base b with corresponding digits
in base c

• (Our favorite method to change base e.g. binary
to hex)

• Examples

▫ 1021304 = 10 21 304 = 0x49C

13

Negative Numbers and Complements

• Two complement operations defined
• Two complement number systems

▫ Represent both positive and negative numbers

• Given m digit base b number x
• Radix complement (b’s complement)

▫ 𝑥𝑐 = 𝑏𝑚 − 𝑥 mod 𝑏𝑚
▫ mod 𝑏𝑚 only has effect for x=0

 What is radix complement of x = 0?

• Diminished radix complement ((b-1)’s
complement)

▫ 𝑥 𝑐 = 𝑏
𝑚 − 1 − 𝑥

14

Complement Number Systems

• Both positive and negative numbers represented
in m digits
▫ Range of m digit base b unsigned number:

 0 ≤ 𝑥 ≤ 𝑏𝑚 − 1

• First half of range used for positive and second
half for negative numbers
▫ Complement of number range

 Positive: 0 to bm/2
 Negative: bm/2 to bm-1

▫ Radix complement has extra negative number for
even b (think b=2)

▫ Diminished radix complement has equal numbers
of positive and negative representations

15

Utility of Complement System

• Sign-magnitude system requires extra +/-
symbols in addition to digits

▫ Binary has easy mapping

 + := 0

 - := 1

▫ If b > 2 a whole digit for the 2 +/- symbols is
wasteful

• Easy to do signed addition and subtraction using
the complement number systems

16

Complement Representation of Negative Numbers

• Radix complement has one more negative than
positive for even base b

• Diminished radix complement has 2 zeros but
same number of positive and negative values

17

Radix Complement Diminished Radix Complement

Number Representation Number Representation

0 0 0 0 or 𝑏𝑚 − 1

0 < 𝑥 < 𝑏𝑚/2 𝑥 0 < 𝑥 < 𝑏𝑚/2 𝑥

−𝑏𝑚/2 ≤ 𝑥 < 0 𝑥 𝑐 = 𝑏𝑚 − 𝑥 −𝑏𝑚/2 ≤ 𝑥 < 0 𝑥 𝑐 = 𝑏𝑚 − 1 − 𝑥

Base 2 Complement Representations

• 1’s complement 255 (or -0)

▫ 255 = 1111 11112

• 2’s complement

▫ −128 = 1000 00002 is valid

▫ Negation gives overflow

18

8 Bit Radix (2’s)Complement 8 bit Diminished Radix (1’s)
Complement

Number Representation Number Representation

0 0 0 0 or 255

0 < 𝑥 < 128 𝑥 0 < 𝑥 < 128 𝑥

−128 ≤ 𝑥 < 0 256 − 𝑥 −127 ≤ 𝑥 < 0 256 − 1 − 𝑥

Negation in Complement Systems

• Negative of any m digit value is also m digits

▫ Exception: -bm/2

• Negative of any number is obtained by applying
the b’s or (b-1)’s complement operation

• The complement operations are related

▫ 𝑥𝑐 = 𝑥 𝑐 + 1 mod 𝑏𝑚

▫ Given one, easy to compute other

19

Digitwise Computation of Diminished Radix Complement

• 𝑥 𝑐 = 𝑏𝑚 − 1 − 𝑥

• 𝑥 𝑐 = 𝑏 − 1 𝑏𝑖 −𝑚;1
𝑖<0 𝑥𝑖 𝑏

𝑖𝑚;1
𝑖<0

• 𝑥 𝑐 = 𝑏 − 1 − 𝑥𝑖 𝑏
𝑖𝑚;1

𝑖<0

• Diminished radix number is an m digit base b
number

▫ Each digit is obtained (as diminished
complement) from corresponding digit in x

20

Base 5 Complements

21

• Examples

• 4’s complement of 2013415

▫ 2431035

• 5’s complement of 2013415

▫ 2431035 + 1 = 2431045

• 5’s complement of 444445

▫ 000005 + 1 = 000015

• 5’s complement of 000005

▫ (444445 + 1) mod 55 = 000005

Base 5 Digit 0 1 2 3 4

4’s Comp. 4 3 2 1 0

Complement Fractions

• m digit fraction is same as m digit integer
divided by bm,
▫ The bm in complement definitions corresponds to

1 for fractions

• Radix complement of f = .f-1f-2...f-m
▫ (1-x) mod 1

 Where mod 1 means discard integer

• The range of fractions is roughly -1/2 to +1/2
• This can be inconvenient for a base other than 2
• The b’s comp. of a mixed number

▫ x = xm-1xm-2...x1x0.x-1x-2...x-n = bm - x,
▫ Both integer and fraction digits are subtracted

22

Scaling Complement Numbers

• Dividing by b corresponds to moving radix point
one place left

▫ Shift number one place right

• Multiplying by base b corresponds to moving
radix point one place right (roughly)

▫ Shift number one place left

• Issues:

▫ What is new left digit on right shift?

▫ When does left shift overflow?

23

Right Shift for Divide

• Positive number 𝑥 = 𝑥𝑚;1𝑥𝑚;2…𝑥1𝑥0
▫ Zero fill: 𝑥/𝑏 = 0𝑥𝑚;1𝑥𝑚;2…𝑥1

• Negative number

▫ (b-1) file: 𝑥/𝑏 = (𝑏 − 1)𝑥𝑚;1𝑥𝑚;2…𝑥1

• Fill rule for even b

▫ Zero fill when 𝑥𝑚;1 < 𝑏/2

▫ (b-1) fill when 𝑥𝑚;1 ≥ 𝑏/2

24

Left Shift for Multiply

• Overflow can occur (loss of information)

▫ Positive numbers

 Any digit other than 0 shifts off left end

 After shift, left-most digit makes number look
negative (digit ≥ 𝑏/2 for even b)

▫ Negative numbers

 Any digit other than (b-1) shifts off left end

 After shirt, left-most digit makes number look
positive (digit < 𝑏/2 for even b)

25

Left Shift Examples

• Non-overflow cases:

▫ 7628 << 1 = 6208 ; −14 ∗ 8 = −112

▫ 0318 << 1 = 3108 ; −25 ∗ 8 = −200

• Overflow cases

▫ 2418 << 1 = 4108 ; 2 ≠ 0 off left

▫ 0418 << 1 = 4108 ; changes from + to –

▫ 7138 << 1 = 1308 ; changes from – to +

▫ 6628 << 1 = 6208 ; 2 ≠ 7 off left

26

Fixed Point Addition and Subtraction

• When radix point is in the same position for
both operands

▫ Add/Sub acts as if numbers were integers

• Addition of signed numbers in radix
complement system only needs an unsigned
adder

▫ Must design m digit base b unsigned adder

• Radix complement signed addition theorem

▫ s = rep(x) + rep(y) = rep(x+y)

▫ rep(x) := b’s complement representation of x

▫ Does not consider overflow

27

Unsigned Addition Hardware
• Perform operation on each

digit of m digit base b
number

• Each digit cell requires
operands xj and yj as well
as a carry in cj

• Sum

▫ 𝑠𝑗 = 𝑥𝑗 + 𝑦𝑗 + 𝑐𝑗 mod 𝑏

• Carry-out

▫ 𝑐𝑗 + 1 = (𝑥𝑗 + 𝑦𝑗 + 𝑐𝑗)/𝑏

▫ All carries are less than
equal to 1 regardless of b

• Works for any fixed radix
point location (e.g.
fractions)

28

Unsigned Addition Example

29

• With fixed number of digits, overflow occurs on
carry from leftmost digit

• Carries are 0 or 1 in all cases

• Addition is defined by a table of sum and carry
for b2 digit pairs

Op1 1 2 . 0 34 = 6.187510

Op2 + 1 3 . 2 14 = 7.562510

Carry 0 1 0 1

Sum 3 1 . 3 04 = 13.75

+ 0 1 2 3

0 00 01 02 03

1 01 02 03 10

2 02 03 10 11

3 03 10 11 12

Base 4 addition table

Adder Implementation Alternatives

• For base b=2k, each digit is
equivalent to k bits

• Adder can be viewed as
logic circuit with 2k+1
inputs and k+1 outputs

• Ripple carry adder
▫ Choice of k affects

computation delay
▫ When 2 level logic is used

what is max gate delay for
m digit addition?
 2m

30

s

x y

c0 c1

Complement Subtracter
• Subtraction in radix

complement is addition with
negated (complemented)
second input

▫ Must supply overflow
detection

• Radix complement is addition of
1 to diminished radix
complement
(𝑥𝑐 = 𝑥 𝑐 + 1 mod 𝑏𝑚)

• Easy to take diminished radix
complement and use carry in of
adder to supply +1 for radix
complement

31

Overflow Detection

• Occurs when adding number of like sign and the
result seems to have opposite sign

• For even b: sign determined by the leftmost digit

▫ Overflow detector only requires

 xm-1, ym-1, sm-1

32

Ripple-carry adder/subtracter

XOR gates select y
for addition or
complement of y for
subtraction in base 2

Carry Lookahead

• Speed of addition depends on carries

▫ Carries need to propagate from lsb to msb

• Two level logic for base b digit becomes complex
quickly for increasing k (b=2k)

▫ Length of carry chain divided by k

• Need to compute carries quickly

1. Determine if addition in position j generates a
carry

2. Determine if carry is propagated from input to
output of digit j

33

Binary Generate and Propagate Signals

• Generate: digit at position j will have a carry

▫ 𝐺𝑗 = 𝑥𝑗𝑦𝑗
• Propagate: carry in passes through to carry out

▫ 𝑃𝑗 = 𝑥𝑗 + 𝑦𝑗
• Carry is defined as 1 if the sum generates a carry

or if a carry is propagated

▫ 𝑐𝑗 + 1 = 𝐺𝑗 + 𝑃𝑗𝑐𝑗

34

Carry Lookahead Speed

• 4 bit carry equations

▫ 𝑐1 = 𝐺0 + 𝑃0𝑐0

▫ 𝑐2 = 𝐺1 + 𝑃1𝐺0 + 𝑃1𝑃0𝑐0

▫ 𝑐3 = 𝐺2 + 𝑃2𝐺1 + 𝑃2𝑃1𝐺0 + 𝑃2𝑃1𝑃0𝑐0

▫ 𝑐4 = 𝐺3 + 𝑃3𝐺2 + 𝑃3𝑃2𝐺1 + 𝑃3𝑃2𝑃1𝐺0 + 𝑃3𝑃2𝑃1𝑃0𝑐0

• Carry lookahead delay

▫ One gate delay for to calculate G or P

▫ 2 levels of gates for a carry

▫ 2 gate delays for full adder (sj)

• The number of OR gate inputs (terms) and AND
gate inputs (literals in a term) grows as the number
of carries generated by lookahead

35

Recursive Carry Lookahead
• Apply lookahead logic to groups of digits
• Group of 4 digits (level 1)

▫ Group generate:

 𝐺10 = 𝐺3 + 𝑃3𝐺2 + 𝑃3𝑃2𝐺1 + 𝑃3𝑃2𝑃1𝐺0
▫ Group propagate:

 𝑃10 = 𝑃3𝑃2𝑃1𝑃0

▫ Can further define level 2 signals which are groups of
level 1 groups

• Group k terms at each level  logkm levels for m bit
addition
▫ Each level introduces 2 more gate delays
▫ k chosen to trade-off reduced delay and complexity of

G and P logic
 Typically 𝑘 ≥ 4 however structure easier to see for k=2

36

Carry Lookahead Adder Diagram

• Group size k=2

37

Digital Multiplication

• Based on digital addition

▫ Generate partial products (from each digit) and
sum for the complete product

▫ “Pencil and paper addition”

38

Accumulated Partial Product

• Partial products accumulated rather than
collected and added in the end

39

1. for i := 0 step 1 until 2m-1

2. pi := 0;

3. for j := 0 step 1 until m-1

4. begin

5. c := 0;

6. for i := 0 step 1 until m-1

7. begin

8. pj+i := (pj+i + xi yj + c) mod b;

9. c := (pj+i + xi yj + c)/b;

10. end;

11. pj+m := c;

12. end; c is a single base b digit
(no longer 0, 1 as in addition)

Parallel Array Multiplier

40

Parallel Array Multiplier Operation

• Each box in array does the base b digit
calculations

▫ 𝑝𝑘(out):= (𝑝𝑘(in) + 𝑥𝑦 + 𝑐(in)) mod 𝑏

▫ 𝑐 (out): = (𝑝𝑘(in) + 𝑥𝑦 + 𝑐)/𝑏

• Inputs and outputs of boxes are single base b
digits (including carries)

• Worst case path from input to output is about
6m gates if each box is a 2 level circuit

▫ In binary, each box is a full adder with an extra
AND gate to compute xy

41

