CPE300: Digital System
Architecture and Design

Fall 2011
MW 17:30-18:45 CBC C316

Arithmetic Unit
10102011

http://www.egr.unlv.edu/~bimorris/cpe300/

Chapter 6

- Number Systems and Radix Conversion
- Fixed-Point Arithmetic

- Seminumeric Aspects of ALU Design

- Floating-Point Arithmetic

Outline

- Number Systems
» Fixed Point Arithmetic

Digital Number Systems

- Expanded generalization of lecture 07 topics

- Number systems have a base (radix) b

- Positional notation of an m digit base b number
"X = Xm-1Xm-2 xle
o Value(x) = X%, x; b

- 5
Range of Representation

- Largest number has all digits equal to largest
possible base b digit, (b — 1)

- Max value in closed form for unsigned m digit
base b number
" Xmax = ?:)1(19 - 1)bi

* xmax = (b — D X' b = (b — 1) (b;:l)

° Xmax = b™ — 1

- Sum of geometric series

oyl pi = (bm—l)

b—-1

Radix Conversion

- Conversion between different number systems
involves computation
= Base of calculation is ¢ (10 typical for us humans)
= Other base is b
- Calculation based on division
= For integers a and d, exist integers q and r such
that
sa=q-d+r
-0<r<b-1
- Notation:
> q = la/d]
«r=amodb (mod is remainder)

. 7
Digit Symbol Correspondence Between Bases

- Each base (b or ¢) has different symbols to
represent digits

- Lookup table given for correspondence between
symbols

= Provides mapping between base b and base ¢
symbols

= May be more than one digit required to represent
a larger base symbol

Baseg 0 1 2 10 11 12 20 21 22 100 101 102

Base Conversion 1

- Convert base b integer to - Example:
calculator base c - Convert 0x3AF to base 10
1. Start with base b o x=0
g X = Xm—1Xm—2 - X1 X0 = x =16-0+ 3 = 3
2. Setx = 0inbasec = x = 16-3+10(=A) =58
3. Left to right, get next symbol x = 16-58 +15 (= F) = 943
X; - 0x3AF = 943,

4. Lookup base ¢ number D;
for symbol x;
5. Calculate in base ¢
2 x=x'b+ Di
6. Repeat step 3 until no more
digits

Base Conversion 2

- Convert calculator base ¢ - Example:
integer to base b - Convert 3587,, to base 12
1. Start with base c integer . 3?27 =298 (rem = 11) = x, = B
o X =Xm_1Xm—2 ... X1 X
o Initialize =2 (rem=10)= x, = 4
s =0 n%=2(rem=0)=>x2=0
o V=X 2
= Produce digits right to left P 0rem=2)=x,=2
3. Set ° 3587=20AB,,
s D,=vmod b
o v = |v/b]
s Lookup D, to get x;
4. Set
2 i=i+1

m]

Repeat step 3if v # 0

- o

Fractions and Fixed Point Numbers

- Base b fraction
o f=f £, ... f
= Value is integer f | f ... f divided by b™
- Mixed fixed point number
° X1 Xp— e X1X0- X_1X_p .. X
= Value of n+m digit integer
© Xpo1Xp—2 e X1XX—1X_9 . X
= Divided by b™
- Moving radix point one place left divides by b
» Right shift for fixed radix point position
- Moving radix point one place right multiplies by b
= Left Shift for fixed radix point position

. ul

Converting Fractions to Calculator Base

- Can use integer conversion - Example
and divide result by b™ - Convert 0.413, to base 10
- Alternative algorithm - F=22=0375
1. Let base b number be ((f 375+1) 9
o f=—"—"=0.171
f =Ttz fom ! 0.171875+4 s
2. Initialize S = 0.521484375
f=00 - Notice: there will be precision
[=-m errors due to numerical round-
3. Find base c equivalent of D off
of digit f; = Only a fixed number of digits
4. Update can be retained
f+D
f==
i=i+1

5. Ifi=0,resultis f; otherwise
repeat step 3

Converting Fractions to Base b

1. Start with fraction f in base c - Example
o f=f1foo e fom - Convert 0.31,,to base 8
2. Initialize ° 031Xx8=248=>f =2
> v=f - 048X8=2384 =>f,=3
c o © 0.84X8=672>f3=6
3. Set -
o D_;=|b-v] « [=0.2364
- v=b-v-D_, - Notice:
> Getbase b digit f_; for D_; = Since 83 > 102, 0.2364 has
with table more accuracy than 0.31,,
4. Increment
o [=0i+1
= Repeat Step 3 until
v=20

Enough digits generated

- un
Digit Grouping for Related Bases

- Base b = ¢k

- Can convert between bases by replacing single
digit symbol in base b with corresponding digits
in base ¢

» (Our favorite method to change base e.g. binary
to hex)

- Examples
= 102130, = 10 21 30, = 0x49C

o

Negative Numbers and Complements

- Two complement operations defined
- Two complement number systems
= Represent both positive and negative numbers

- Given m digit base b number x
- Radix complement (b’s complement)
= x¢ = (b™ — x) mod b™
> mod b™ only has effect for x=0
- What is radix complement of x = 0?
» Diminished radix complement ((b-1)’s
complement)

s X, =b"—1—x

. .|

Complement Number Systems

- Both positive and negative numbers represented
in m digits
= Range of m digit base b unsigned number:
0<x<p"-1
- First half of range used for positive and second
half for negative numbers
= Complement of number range
- Positive: 0 to bm/2
- Negative: b™/2 to b™-1
= Radix complement has extra negative number for
even b (think b=2)
= Diminished radix complement has equal numbers
of positive and negative representations

. |
Utility of Complement System

- Sign-magnitude system requires extra +/-
symbols in addition to digits
= Binary has easy mapping
* +:=0
- -i=1
» If b > 2 a whole digit for the 2 +/- symbols is
wasteful

- Easy to do signed addition and subtraction using
the complement number systems

v

Complement Representation of Negative Numbers

Radix Complement Diminished Radix Complement

Number Representation Number Representation
0 0 0 Oorb™—1
0<x<bm/2 X 0<x<bm/2 X
—bm/2 <x <0 |x|¢ = b™m — |x] —bm/2<x<0 [x|]c=bm—1—|x|

- Radix complement has one more negative than
positive for even base b

- Diminished radix complement has 2 zeros but
same number of positive and negative values

Base 2 Complement Representations

8 Bit Radix (2’s)Complement 8 bit Diminished Radix (1’s)
Complement

Number Representation Number Representation
0 0 0 0 or 255
0<x<128 X 0<x<128 X
—128<x <0 256 — |x| —127 <x <0 256 — 1 — |x|

- 1’s complement 255 (or -0)
= 255 =11111111,

- 2’s complement
= —128 = 1000 0000, is valid
> Negation gives overflow

.
Negation in Complement Systems

- Negative of any m digit value is also m digits
» Exception: -b™/2
- Negative of any number is obtained by applying
the b’s or (b-1)’s complement operation
- The complement operations are related
o x¢ = (X¢+ 1) mod b™
= Glven one, easy to compute other

o

Digitwise Computation of Diminished Radix Complement

X, =bm—1—x
c R, = YIUb — Db — TG x)b
« X, = 2%, (b—l—xi)bi

- Diminished radix number is an m digit base b
number

= Each digit is obtained (as diminished
complement) from corresponding digit in x

Base 5 Complements

Base 5 Digit 0 1 2 3 A
4’s Comp. N 3 2 i 0

- Examples
* 4’s complement of 201341,
" 243103,
* 5's complement of 201341,
" 243103, + 1 = 243104,
* 5's complement of 44444,
" 00000, + 1= 00001,
* 5's complement of 00000,
> (44444, + 1) mod 55 = 00000,

=l

Complement Fractions

- m digit fraction is same as m digit integer
divided by b™,
= The b™ in complement definitions corresponds to
1 for fractions
- Radix complementof f = .f f,..f
= (1-x) mod 1
- Where mod 1 means discard integer
- The range of fractions is roughly -1/2 to +1/2
- This can be inconvenient for a base other than 2
» The b’s comp. of a mixed number
5 X =X X e X X X (X e X, = DM - X,
= Both integer and fraction digits are subtracted

- =
Scaling Complement Numbers

- Dividing by b corresponds to moving radix point
one place left
= Shift number one place right

- Multiplying by base b corresponds to moving
radix point one place right (roughly)
> Shift number one place left

» Issues:
= What is new left digit on right shift?
= When does left shift overflow?

Right Shift for Divide

- Positive number x = x,,,_1X,,_5 ... X1 X
o Zero fill: x/b = Ox,,_1 X5 ... X1

- Negative number
= (b-1) file: x/b = (b — 1)x;,_1Xpm—2 ... Xq

» Fill rule for even b
= Zero fill when x,,,_; < b/2
o (b-1) fill when x,,,_; = b/2

- =
Left Shift for Multiply

» Overtlow can occur (loss of information)

= Positive numbers
- Any digit other than o shifts off left end
- After shift, left-most digit makes number look
negative (digit > b/2 for even b)
= Negative numbers
- Any digit other than (b-1) shifts off left end

- After shirt, left-most digit makes number look
positive (digit < b/2 for even b)

. =
Left Shift Examples

- Non-overflow cases:
0 7624 << 1=0620, ; —14%8=—112
° 031, << 1=1310, ; —25%8=—200
» Overflow cases
241, << 1 =410, ;2 # 0 offleft
0413 << 1=41045 ;changesfrom + to —

7133 << 1 =1304 ; changesfrom —to +
662, << 1 =0620g ; 2 # 7 offleft

a

a

m|

a

4
Fixed Point Addition and Subtraction

- When radix point is in the same position for
both operands
= Add/Sub acts as if numbers were integers

- Addition of signed numbers in radix
complement system only needs an unsigned
adder
= Must design m digit base b unsigned adder

- Radix complement signed addition theorem
> s = rep(x) + rep(y) = rep(x+y)
= rep(X) := b’s complement representation of x
= Does not consider overflow

Unsigned Addition Hardware

- Perform operation on each

digit of m digit base b
number l 1
- Each digit cell requires
0<c,, <1 <«— Lix+y +c) /0l «— 0<c <1
operands x; and y; as well : ol
as a carry in ¢ |
0< s, < b
‘ Sum Base b digit adder
° s;=(x;+y;,+c)modb b 5 % %
« Carry-out by ' ¢ 4
¢, 1= 10x;+yj+cj)/b] k| & s e e
= All carries are less than] l i
equal to 1 regardless of b o - &

An m-digit base b unsigned adder

- Works for any fixed radix
point location (e.g.
fractions)

Unsighed Addition Example

1z ezl = |aws, +lol1]2]3

S T T T
IBEEIRE

31 .3 0, = 1375 N 02 03 10 11

BN 03 10 11 12

Base 4 addition table

- With fixed number of digits, overtflow occurs on
carry from leftmost digit

» Carries are o or 1 1n all cases

- Addition is defined by a table of sum and carry
for b2 digit pairs

.
Adder Implementation Alternatives

- For base b=2%, each digit is
equivalent to k bits “

- Adder can be viewed as ik %k
logic circuit with 2k+1

inputs and k+1 outputs Base b=2K
€1 < digit adder [“0

- Ripple carry adder i/k
= Choice of k affects
computation delay
= When 2 level logic is used
what is max gate delay for
m digit addition?
- 2m

S

R |
Complement Subtracter

- Subtraction in radix
complement is addition with
negated (complemented)

second input X y

= Must supply overflow i
detection (b-1)'s complement

- Radix complement is addition of

1 to diminished radix

complement Y ¢

(x¢ = (¢ + 1) mod b™) Base badder (€&—— +1

- Easy to take diminished radix l
complement and use carry in of e
adder to supply +1 for radix Copyign 52004 Poarson rarsc . o

complement

I L
Overflow Detection

» Occurs when adding number of like sign and the
result seems to have opposite sign

- For even b: sign determined by the leftmost digit
= Overtlow detector only requires

’ Xm—l’ Ym—l’ Sm—l

Ripple-carry adder/subtracter

X1 Y1 X2 y2

J.L - ;
\]._]» u Subtract

1l
control XOR gates select y
i 4 i 4 for addition or

;) . . .) complement of y for
== B pevesy RO Bope W subtraction in base 2

X0 Yo

3|
Carry Lookahead

- Speed of addition depends on carries
= Carries need to propagate from lsb to msb
- Two level logic for base b digit becomes complex
quickly for increasing k (b=2%)
= Length of carry chain divided by k
- Need to compute carries quickly
1. Determine if addition in position j generates a
carry
2. Determine if carry is propagated from input to
output of digit j

-

Binary Generate and Propagate Signals

- Generate: digit at position j will have a carry

* Gy = x5
- Propagate: carry in passes through to carry out
" P =x;ty,

- Carry is defined as 1 if the sum generates a carry
or if a carry is propagated

; cj+1=Gj+chj

3%
Carry Lookahead Speed

» 4 bit carry equations
=y = Gy + Pycy
> ¢, = G; + P,G, + P,Pyc,
o ¢ = G, + P,G, + P,P,G, + P,P,P,c,
> ¢, = Gy + P,G, + P.P,G, + P.P,P,G, + P.P,P,Pc,
- Carry lookahead delay
= One gate delay for to calculate G or P
= 2 levels of gates for a carry
> 2 gate delays for full adder (s;)
- The number of OR gate inputs (terms) and AND
gate inputs (literals in a term) grows as the number
of carries generated by lookahead

-

Recursive Carry Lookahead

- Apply lookahead logic to groups of digits
-+ Group of 4 digits (level 1)
= Group generate:
© Gy = G; + PsG, + P;P,G, + P.P,P,G,
= Group propagate:
* Pty = P3P,P P,
= Can further define level 2 signals which are groups of
level 1 groups

- Group k terms at each level - log,m levels for m bit
addition
= Each level introduces 2 more gate delays

= k chosen to trade-off reduced delay and complexity of
G and P logic

- Typically k = 4 however structure easier to see for k=2

Carry Lookahead Adder Diagram

» Group size k=2

.
!

2
Lookahead 1 <t

Level 2
1 i
G G

Lookahead : :
Level 1 c, <«
Compute

ge erate

popagate T T

H

Adders -<

Y

Lookahead
Level 3

o e
O

DM

N

9]
NC)

R e o
B
R e
Sut—>

wO
OF>» _Ul—»

>
O
N
r\;U —>
O
OQ i

«—=—» O} >
‘(_;;X_> ::0—>
«— <—>» O}>
< X — _O—>»

1
1
¢

< < —
€« —» O
<«— < —>]
«— < —>
<« X —>

=
A
4
>
A

FA [«

=
A
3
A
>
A

» <€—
<
<

O <—]
e
< |
‘_.
-«

OSU)
w
(2]

wfl)

r\)(n
(%]

o(l)

Digital Multiplication

- Based on digital addition

» Generate partial products (from each digit) and
sum for the complete product

= “Pencil and paper addition”

Xq X, X, Xo Multiplicand

Ys Yo Yy Yo Multiplier

(XVola (Vo3 (X¥Vp)s (X¥p)y (X¥p)g PPy

(xyps (xvp)g Ovgds vy (Xyy)g PP,

(XVo)s (XVo)g (X¥0)s (XVo)i (XVs)g PP,
(X¥3)s (X¥3)3 (XVa)s (X¥3)1 (XV3)g PP,

. »

Accumulated Partial Product

- Partial products accumulated rather than
collected and added in the end

1. fori:=0 step 1 until 2m-1

2. p; := 0;

3. for) := 0 step 1 until m-1

4, begin

5. c :=0;

6. fori:=0 step 1 until m-1

7. begin

8. Pj+i := (Pj+ + X y; + €) mod b;
9. c:=L(p,; + xy; + c)/bl;
10. end;

11. Pj+m = C;

12. end; c is a single base b digit

(no longer 0, 1 as in addition)

Parallel Array Multiplier
Y v v

% y pk(in)

o Cout Cin <—
pk(out) X, 0 x, 0 X5 0
] | | Yo
/] A 7]
< <— -« <—
] Yy
/1 | /.
-<— < € < ()
X N Yo
/1 4(| o
(— L N] “_ (_ O

Pom-1 Pom-2 Pom-3 Pop-4 Po P4 Po
Copyright © 2004 Pearson Prentice Hall, Inc.

. |
Parallel Array Multiplier Operation

- Each box in array does the base b digit
calculations
= p(out): = (p,(in) + xy + c(in)) mod b
- ¢ (out): = [(py(in) + xy + ¢)/b]

- Inputs and outputs of boxes are single base b
digits (including carries)

- Worst case path from input to output is about
6m gates if each box is a 2 level circuit

= In binary, each box is a full adder with an extra
AND gate to compute xy

