
http://www.egr.unlv.edu/~b1morris/cpe300/

CPE300: Digital System

Architecture and Design
Fall 2011

MW 17:30-18:45 CBC C316

Arithmetic Unit

10032011

Outline

• Recap Chapter 3

• Number Systems

• Fixed Point Arithmetic

2

The Motorola MC68000

• Introduced in 1979
▫ Computers

 Apple Lisa 2, Apple Macintosh 128, Atari 520STfm and
1040STfm, Commodore Amiga 500 and 1000

▫ Still in use today (now Freescale Semiconductor)

• Very early 32-bit microprocessor
▫ Most operations on 32-bit internal data
▫ Some operations may use different number of bits
▫ External datapaths may not all be 32 bits wide

 24-bit address bus for MC68000

• Complex instruction set computer
▫ Large instruction set
▫ 14 addressing modes

3

chip

die

Motorola MC68000 Highlights

• CISC – has many addressing modes and
instruction formats

▫ Pack as much functionality as possible into small
word size

• 16-bit instruction load

▫ Some instructions multiple words

• Interrupts and traps (a real machine)

• Memory mapped I/O

4

New Concepts from MC68000

• Variable length instructions
▫ Large instruction set, variable format

• Operation on many different types
▫ Must specify byte, word, longword

• Effective address (EA) calculation
▫ 14 Addressing modes

• Subroutines
▫ E.g. function calls

• Exceptions
▫ Interruption of normal sequential instruction

execution

• Memory-mapped I/O
▫ Part of CPU memory reserved for I/O

5

MC68000 Programmer’s Model

6

Features of Processor State

• Distinction between 32-bit data registers and
32-bit address registers

• 16 bit instruction register
▫ Variable length instructions handled 16 bits at a

time

• Stack pointer registers
▫ User and system stack pointers

• Condition code register: System & User bytes
▫ Arithmetic status (N, Z, V, C, X) is in user status

byte
▫ System status has Supervisor & Trace mode flags

and the Interrupt Mask

7

Main Memory

• Main memory:
▫ Mb[0..224-1]<7..0>: memory as bytes

▫ Mw[ad]<15..0> := Mb[ad]#Mb[ad+1]: memory as words

▫ Ml[ad]<31..0> := Mw[ad]#Mw[ad+2]: memory as
longwords

• Word and longword forms are big-endian

▫ Lowest numbered byte contains most significant
bit of word

• Hard word alignment constraints
▫ Not described in the RTN
▫ Word addresses must in end in on binary 0
▫ Longword addresses end in two binary 0

8

Addressing Mode Highlights

• General address of operand specified by 6-bit
effective address field

• Modes 0-6 use a register to calculate a memory
address

▫ Based offset modes (5-6) require an extra word (16-
bits) to specify address

• Mode 7 does not use a register
▫ Functionality is expanded by repurposing reg field

▫ All variants require extra words to complete the
instruction and specify the memory address

9

5 4 3 2 1 0

Mode Reg

MC68000 Instruction Types

• Instruction fields not standardized

▫ Maximize instructions in limited word size (bits)

▫ Operates on different types (B, W, L)

• Data movement instructions

▫ CC can be set during move

• ALU instructions

▫ 1 EA, 1 Dn operand

▫ Destination specified by 3-bit mode field

• Program control instructions

▫ Use 16 condition codes

▫ Has subroutine specific instructions

10

Exceptions

• Changes sequential instruction execution

▫ Next instruction fetch not from PC location

▫ Exception vector

 Address supplying the next instruction

▫ 7 levels of priority

• Arise from instruction execution, hardware faults,
external conditions

▫ Interrupts – externally generated exceptions

▫ ALU overflow, power failure, completion of I/O
operation, out of range memory access, etc.

• Trace bit = 1 causes exception after every instruction

▫ Used for debugging

11

Memory-Mapped I/O
• Part of CPU memory is

devoted/reserved for I/O
▫ No separate I/O space

▫ Not popular for machines
having limited address bits

• Single bus needed for memory
and I/O
▫ Less packaging pins

• Size of I/O and memory spaces
independent
▫ Many or few I/O devices may

be installed

▫ Much or little memory may
be installed

• Spaces are separated by
putting I/O at the top end of
address space

0xFFFFFF

I/O Space …

0xFF800

0xFF7FFF

Memory Space
…

…

0x000000

12

24-bit address space with top
32K reserved for I/O

Notice top 32K can be
addressed by a negative 16-bit
value

The SPARC Microprocessor

• Scalable Processor Architecture (SPARC)
▫ RISC microprocessor architecture
▫ Not a machine – specification for implementation

• General register, load/store architecture
• Only 2 addressing modes

▫ Reg + Reg
▫ Reg + 13-bit constant

• Only 69 basic instructions
▫ 32-bit instruction length
▫ Separate floating point handling

 3 processing units – integer unit, FP unit,
coprocesser

13

SPARC Highlights

• RISC machine has fewer simple instructions

▫ Multistep arithmetic operations happen in special
units

▫ Regular instruction formats and few addressing
modes simplify instruction decode

• Load/store machine with ALU only on registers

• Use of branch delays for 4 stage pipeline

• Use of register windows

▫ Extend register space for fewer memory
operations

14

SPARC Processor State
• 32-bit general registers

▫ Integer and floating point
separate

• Brach delays
▫ Requires 2 program

counters
• Processor-status register

(PSR)
▫ Condition codes

• Window-invalid mask
(WIM)
▫ Used for register windows

• Trap base register
▫ Traps and interrupts

15

Register Windows

• High percentage of memory traffic for saving and
restoring registers during procedure calls
▫ More registers = less memory traffic
▫ Reduce overhead of calls

• Only a small subset of registers is visible to the
programmer at a given time (within procedure)
▫ Dedicated but overlapping registers groups

 Global

 Input parameters

 Output parameters

 Local registers

▫ Overlap designed to prevent swapping of registers
 Output parameters in one window become input

parameters in the next

16

Register Windows Mechanism

17

Window Specifics

• CWP points to register currently called r8

▫ save moves CWP to former r24

▫ restore reverses process

• Parameters placed in r24..r31 by caller are
available in r8..r15 by callee

• Spill := attempt to save when all windows have

been used
▫ save traps to routine to store registers to memory

▫ Window wraps around like a circular buffer

 On overflow, first window is reused

18

Main Memory

• Main memory:
▫ Mb[0..232-1]<7..0>: memory as bytes

▫ Mh[ad]<15..0> := Mb[ad]#Mb[ad+1]: memory as

halfwords

▫ Mw[ad]<31..0> := Mh[ad]#Mh[ad+2]: memory as words

• Word and halfword forms are big-endian

▫ Lowest numbered byte contains most significant
bit of word

• Hard word alignment constraints

▫ Not described in the RTN

▫ Word addresses must in end in binary 00

19

Addressing Modes

• Only 2 modes for load/store
▫ Sum of two registers
▫ Sum of register and sign extended 13-bit constant

• Allows for a variety of addressing modes can be
synthesized
▫ Indexed

 Base in one register, index in another

▫ Register indirect
 g0 + rn ; r0 = 0

▫ Displacement
 rn + const. ; n≠0

▫ Absolute
 g0 + const.

 Can only reach the bottom or top 4K bytes of memory

20

RTN for Instruction Interpretation
• Instruction_interpretation := (

 IR  Mw[PC] ; instruction_execution;

 update_PC_and_nPC; instruction_interpretation):

• Notice execution occurs before PC updates

▫ 2 PC values to update because of delayed branch

• Interrupts not mentioned in this simple RTN
statement

21

SPARC MB86900 Pipeline

• 4 stage pipeline
▫ Results written to registers in write stage
▫ A new inst. is started (issued) before previously

issued instructions are complete
▫ Instructions guaranteed to complete in order

22

RISC vs. CISC Designs
• CISC: Complex Instruction Set Computer

▫ Many complex instructions and addressing modes
▫ Some instructions take many steps to execute

 Varying lengths of time
▫ Not always easy to find best instruction for a task

• RISC: Reduced Instruction Set Computer
▫ Pipeline friendly

 Few, simple instructions, addressing modes
 Usually one word per instruction
 May take several instructions to accomplish what CISC

can do in one
 Should be able to finish (nearly) one instruction per clock

cycle
▫ Complex address calculations may take several

instructions
▫ Usually has load-store, general register ISA

23

Problem Solving

• Homework problems

• 3.1

• 3.2

• 3.3

24

Chapter 6

• Number Systems and Radix Conversion

• Fixed-Point Arithmetic

• Seminumeric Aspects of ALU Design

• Floating-Point Arithmetic

25

Digital Number Systems

• Expanded generalization of lecture 07 topics

• Number systems have a base (radix) b

• Positional notation of an m digit base b number

▫ 𝑥 = 𝑥𝑚;1𝑥𝑚;2…𝑥1𝑥0

▫ Value 𝑥 = 𝑥𝑖𝑏
𝑖𝑚;1

𝑖<0

26

Range of Representation

• Largest number has all digits equal to largest
possible base 𝑏 digit, (𝑏 − 1)

• Max value in closed form for unsigned m digit
base b number

▫ 𝑥max = (𝑏 − 1)𝑏𝑖𝑚;1
𝑖<0

▫ 𝑥max = (𝑏 − 1) 𝑏𝑖 =𝑚;1
𝑖<0 (𝑏 − 1)

𝑏𝑚;1

𝑏;1

▫ 𝑥max = 𝑏
𝑚 − 1

• Sum of geometric series

▫ 𝑏𝑖 =𝑚;1
𝑖<0

𝑏𝑚;1

𝑏;1

27

Radix Conversion

• Conversion between different number systems
involves computation
▫ Base of calculation is c (10 typical for us humans)
▫ Other base is b

• Calculation based on division

▫ For integers a and d, exist integers q and r such
that

▫ 𝑎 = 𝑞 ∙ 𝑑 + 𝑟
 0 ≤ 𝑟 ≤ 𝑏 − 1

• Notation:

▫ 𝑞 = 𝑎/𝑑
▫ 𝑟 = 𝑎 mod 𝑏 (mod is remainder)

28

Digit Symbol Correspondence Between Bases

• Each base (b or c) has different symbols to
represent digits

• Lookup table given for correspondence between
symbols

▫ Provides mapping between base b and base c
symbols

▫ May be more than one digit required to represent
a larger base symbol

29

Base 12 0 1 2 3 4 5 6 7 8 9 A B

Base 3 0 1 2 10 11 12 20 21 22 100 101 102

Base Conversion 1
• Convert base b integer to

calculator base c

1. Start with base b

▫ 𝑥 = 𝑥𝑚;1𝑥𝑚;2…𝑥1𝑥0

2. Set 𝑥 = 0 in base c

3. Left to right, get next symbol
𝑥𝑖

4. Lookup base c number 𝐷𝑖
for symbol 𝑥𝑖

5. Calculate in base c

▫ 𝑥 = 𝑥 ∙ 𝑏 + 𝐷𝑖
6. Repeat step 3 until no more

digits

• Example:

• Convert 0x3AF to base 10

▫ 𝑥 = 0

▫ 𝑥 = 16 ∙ 𝑥 + 3 = 3

▫ 𝑥 = 16 ∙ 3 + 10 (= 𝐴) = 58

▫ 𝑥 = 16 ∙ 58 + 15 (= 𝐹) = 943

• 0x3AF = 94310

30

Base Conversion 2
• Convert calculator base c

integer to base b

1. Start with base c integer

▫ 𝑥 = 𝑥𝑚;1𝑥𝑚;2…𝑥1𝑥0

2. Initialize

▫ 𝑖 = 0

▫ 𝑣 = 𝑥

▫ Get digits right to left

3. Set

▫ 𝐷𝑖 = 𝑣 mod 𝑏

▫ 𝑣 = 𝑣/𝑏

▫ Lookup 𝐷𝑖 to get 𝑥𝑖
4. Set

▫ 𝑖 = 𝑖 + 1

▫ Repeat step 3 if 𝑣 ≠ 0

• Example:

• Convert 358710 to base 12

▫
3587

12
= 298 𝑟𝑒𝑚 = 11 𝑥0 = 𝐵

▫
298

12
= 24 𝑟𝑒𝑚 = 10 𝑥1 = 𝐴

▫
24

12
= 2 𝑟𝑒𝑚 = 0 𝑥2 = 0

▫
2

12
= 0 𝑟𝑒𝑚 = 2 𝑥3 = 2

• 3587=20AB12

31

Fractions and Fixed Point Numbers

• Base b fraction

▫ f= .f-1 f-2… f-m

▫ Value is integer f-1 f-2… f-m divided by 𝑏𝑚

• Mixed fixed point number

▫ 𝑥𝑛;1𝑥𝑛;2…𝑥1𝑥0. 𝑥;1𝑥;2…𝑥;𝑚

▫ Value of n+m digit integer

 𝑥𝑛;1𝑥𝑛;2…𝑥1𝑥0𝑥;1𝑥;2…𝑥;𝑚

▫ Divided by 𝑏𝑚

• Moving radix point one place left divides by b

▫ Right shift for fixed radix point position

• Moving radix point one place right multiplies by b

▫ Left Shift for fixed radix point position

32

Converting Fractions to Calculator Base

• Can use integer conversion
and divide result by 𝑏𝑚

• Alternative algorithm

1. Let base b number be

▫ 𝑓 =. 𝑓;1𝑓;2…𝑓;𝑚

2. Initialize

▫ 𝑓 = 0.0

▫ 𝑖 = −𝑚

3. Find base c equivalent of 𝐷
of digit 𝑓𝑖

4. Update

▫ 𝑓 =
𝑓:𝐷

𝑏

▫ 𝑖 = 𝑖 + 1

5. If 𝑖 = 0, result is 𝑓; otherwise
repeat step 3

• Example

• Convert 0.4138 to base 10

▫ 𝑓 =
0:3

8
= 0.375

▫ 𝑓 =
0.375:1

8
 = 0.171875

▫ 𝑓 =
0.171875:4

8
= 0.521484375

• Notice: there will be precision
errors due to numerical round-
off

▫ Only a fixed number of digits
can be retained

33

Converting Fractions to Base b

1. Start with fraction f in base c

▫ 𝑓 =. 𝑓;1𝑓;2…𝑓;𝑚

2. Initialize

▫ 𝑣 = 𝑓

▫ 𝑖 = 1

3. Set

▫ 𝐷;𝑖 = 𝑏 ∙ 𝑣

▫ 𝑣 = 𝑏 ∙ 𝑣-𝐷;𝑖

▫ Get base b digit 𝑓;𝑖 for 𝐷;𝑖
with table

4. Increment

▫ 𝑖 = 𝑖 + 1

▫ Repeat Step 3 until

 𝑣 = 0

 Enough digits generated

• Example

• Convert 0.3110 to base 8

▫ 0.31 × 8 = 2.48 𝑓;1 = 2

▫ 0.48 × 8 = 3.84 𝑓;2 = 3

▫ 0.84 × 8 = 6.73 𝑓;3 = 6

• Notice:

▫ Since 83 > 102, 0.2368 has
more accuracy than 0.3110

34

Digit Grouping for Related Bases

• Base b = ck

• Can convert between bases by replacing single
digit symbol in base b with corresponding digits
in base c

• (Our favorite method to change base e.g. binary
to hex)

35

