CPE300: Digital System
Architecture and Design

Fall 2011
MW 17:30-18:45 CBC C316

Number Representation
09212011

http://www.egr.unlv.edu/~bimorris/cpe300/

Outline

- Recap Logic Circuits for Register Transfer
- Machine Number Representation
- Performance Measurement

« CISC vs. RISC

Logic Circuits in ISA

- Circuit components support data transmission
and storage as well
= Flip-flops for registers (machine state)
= Logic gates for control

Multi-Bit Register Transfer

- Implementing A<m..1> € B<m..1>
- Strobe signal to store (latch) value in register

D Q D Q

1 1
> Q — Q B 1

0

o 0 Strobe 1

2 2 L —’
S EN D Q 7 D Q 0

B<m..1z A(m..1i & 4

> 0 > Q

D Q D Q ‘ 0

m m Strobe L.
> @ > Q (b) Timing
B A

Strobe —

(a) Individual flip-flops (b) Abbreviated notation

Copyright © 2004 Pearson Prentice Hall, Inc.

sl
m-Bit Multiplexer

An n-way gated merge

m
20—74

0

D, —

G,

m
Dn—1 +

\ 4
L/ /m
\ -/
T /m
\ b
L/ /m

G

n-1

(a) Multiplexer in terms of gates

An n-way multiplexer with decoder

° o

D, —~le

,{/k

Select

(b) Symbol abbreviation

- Multiplexer gate signals Gi may be produced by
a binary to one-out-of n decoder
- How many gates with how many inputs?
> What is relationship between k and n?

Multiplexed Transfers using Gates and Strobes

- Selected gate and strobe determine which
Register is transferred to where.

s A«—C, and B«C can occur together, but not A<-C,
and B<D

Hold time

m
D Q—#4 m #—D Q \
c A L
r SA_> Q |I
h 0 O™ ot |-
_ c | |
= |
m B
D Q4 m ~—b Q | ‘
|
D B ! \
ropa

Copyright © 2004 Pearson Prentice Hall, Inc.

Wired-OR Bus

- Bus is a shared datapath
= Open collector gates driving bus
= OR distributed over the entire connection
= Single pull-up resistor for whole bus

+V

B BT D -
01 oc. Tl o.c. =11 o.c.

Copyright © 2004 Pearson Prentice Hall, Inc.

Tri-State Gate

- Controlled gating
= Only one gate active at a time
» Undefined output when not active

| M +V
| B
I S
I S
| N
I :l »- R
| \\
Data —: —~— Out Data Out
[-, -7
! > ZD/,
| Pl Enable
sn 120

.- Enable N

(a) Tri-state gate structure (b) Tri-state gate symbol
Enable Data Output
0 0 Hi-Z
0 1 Hi-Z
1 0 0
1 1 1

(c) Tri-state gate truth table
Copyright © 2004 Pearson Prentice Hall, Inc.

Tri-State Bus

D Q m D Q i —D Q L
a1 'm ’'m
R[0]] 7 R(1] | A v RIn 1] | i
SO > -O- GO 81 > 5 Gl1 Sn—1 > 6 Gn_‘l
m A mA m A
m, _
7
Tri-state bus

- Can make any register transfer R[1] €« R[]]

- Only single gate may be active at a time
° G, # Gy= 1

- o

Heuring’s Rules of Buses

 Only one thing on bus during a clock cycle
= Gate-strobe paradigm
- Bus contents disappear at end of clock cycle
= Bus items are not stored unless strobed into a
register
» Clock period must be long enough to ensure
valid signals everywhere along bus

- What are contents of tri-state bus when enable
signal is low?
= Hi-Z — in disconnected “floating” state

Example: Registers + ALU with Single Bus

L Incrementer

Example 5ol [
RIO] /]/ A'm
Abstract RTN RI0l,—p 3| RIO,, .—%Q D
R[3] € R[1]+R[2]; . W
Wout Q <—Win
Concrete RTN L ALU-type units are

Y € R[2];

m D Q
b Q +[?—' " combinational logic
7 & R[1] + Y; il Y.~ a m — have no memory
R, __a] Ry,
R[3] € A; : -
! Adder
m

Control Sequence

R[Z]out’ Yin; L %
/]
R[l]out/ Zln; D O%— i Q D
Zout’ R[3]in; Rn-1] A
R[n_”in_D a R[n_ﬂout Zou Q <_Zin

Note: 3 concrete steps to describe single abstract RTN step

Sighal Timing

- Distinction between gating and strobing signal
- How is minimum clock period determined?

| To T1 T2

Clk

R1out

Zout

Yin

Zin

R3in

Register

transfer YR

Z<R[1]

|
[
]
|
|
|
I
[
R2out]
[
|
I
I
|
|
|
|
|
|
|
: R[3]«Z
|

| I
I I
I I
| I
I I
I I
| I
| I
| I
- :
I I
I I
I I
| I
I I
| |
I I
| I
I I
| |
| I
I I
| I
| I

SN ol IS ISR ol IS N

. s

Example notes

- R[i]orY can get the contents of anything but Y
- Result cannot be on bus containing operand
= Arithmetic units have result registers
- Only one of two operands can be on the bus at a
time
= Adder has register for one operand

o

RTN and Implementation

» Abstract RTN

= Describes what machine does
= R[3] € R[1] + R[2];

« Concrete RTN

= Describes how it is accomplished given particular

hardware implementation
= Y& R[2]; Z € R[1] + Y; RI[3] € Z;

- Control Sequence

= Control signal assertion sequence to produce

result
° R[2]_uer Yins RIL11ouer 2547 Zoyer RI3I1;

in in

5
Chapter 2 Summary

- Classes of computer ISAs

- Memory addressing modes

- SRC: a complete example ISA

» RTN as a description method for ISAs

« RTN description of addressing modes

- Implementation of RTN operations with digital
logic circuits

- Gates, strobes, and multiplexers

Machine Representation

- Computers manipulate bits

= Bits must represent “things”
- Instructions, numbers, characters, etc.
- Must tell machine what the bits mean

» Given N bits
= 2N different things can be represented

v

Positional Notation for Numbers

- Base (radix) B number - B symbols per digit
= Base 10 (Decimal): 0,1,2,3,4,5,6,7,8,9
> Base 2 (binary) o, 1
- Number representation
o d,,d,,...d,d,d, 1s 32 digit number
= Value = d,,xB3'+ d,,xB3° + ... + d xB* + d,xB°

- Examples

= (Decimal): 90
° = 09x10! + 0x10°

= (Binary): 1011010
© = 1x20 + Ox25 + 1x24 + 1x23 + 0x22 + 1x2! + Ox2°
*=64+16+8 +2
© =90

- 7 binary digits needed for 2 digit decimal number

- s

Hexadecimal Number: Base 16

- More human readable than binary
- Base with easy conversion to binary

= Any multiple of 2 base could work (e.g. octal)
- Hexadecimal digits

Decimal 0 1 2 3

6 7 8 9 10 11 12 13 14 15

binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

hex 0 1 2 3 4 5 6 7 8 9 A B c D E F

= 1 hex digit represents 16 decimal values or 4
binary digits
= Will use 0x to indicate hex digit

Hex/Binary Conversion

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
binary 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
hex 0 1 2 3 4 5 6 7 8 9 A B C D E F
- Examples
[]
5 1010 1100 0101 (binary)
- = 0OxACSH

5 10111 (binary)
= 0001 0111 (binary)
= 0Ox17
= Ox3F9
= 0011 1111 1001 (binary)
=11 1111 1001 (binary)

Sighed Numbers

- N bits represents 2N values

- Unsigned integers
- Range [0, 2°2-1]

- How can negative values be indicated?
» Use a sign-bit
> Boolean indicator bit (flag)

.
Sigh and Magnitude

» 16-bit numbers
= +1 (decimal) = 0000 0000 0000 0001 = 0x0001
= -1 (decimal) = 1000 0000 0000 0000 = 0x8001

» Problems
= Two zeros
* 0x0000
* 0x8000

= Complicated arithmetic

- Special steps needed to handle when signs are same
or different (must check sign bit)

=l

Ones Complement

- Complement the bits of a number
= +1 (decimal) = 0000 0000 0000 0001 = 0x0001

o -1 (decimal) = 1111 1111 1111 1110 = OxFFFE
- Positive number have leading zeros
- Negative number have leading ones
 Arithmetic not too difficult
- Still have two zeros

=l
Two’s Complement

- Subtract large number from a smaller one

= Borrow from leading zeros
3

= Result has leading ones .. 0011
. 0100 4

- Unbalanced representation

= Leading zeros for positive
- 2N non-negatives
= Leading ones for negative number
- 2N-1 pegative number
= One zero representation
- First bit is sign-bit (must indicate width)
= Value = d, x-23' + d,,x23° + ... + d,x2! + d,x2°

Negative value for sign bit

Two’s Complement Negation

- Shortcut = invert bits and add 1
> Number + complement = oxF..F = -1

x+x=-1
x+1=—x
- Example

X 1111 1110
X 0000 0001
x+1 00000010

- =
Two’s Complement Sign Extension

- Machine’s have fixed width (e.g. 32-bits)
= Real numbers have infinite width (invisible
extension)
- Positive has infinite 0’s
- Negative has infinite 1’s
- Replicate sign bit (msb) of smaller container to
fill new bits in larger container

- Example

111111111111 1110
111111111111 1111} 111111111111 1110

O

Overflow

- Fixed bit width limits number representation

» Occurs if result of arithmetic operation cannot
be represented by hardware bits

- Example
= 8-bit: 127 + 127
0111 1111 127
0111 1111 127

- Sometimes called the V flag in condition code

Chapter 3

- 3.1 Machine characteristics and performance
» 3.2 RISC vs. CISC
+ 3.3 A CISC microprocessor
> The Motorola MC68000
» 3.4 A RISC architecture
= The SPARC

=

Machine Performance

- What is machine performance?
- How can performance be measured?

- Response time
= How long to complete a task
 Throughput
= Total work completed per unit time
= E.g. task/per hour

|

Some Performance Metrics

« MIPS: Millions of Instructions Per Second

- MIPS = Ir;:struct.lon Cpunt
_ xecution Time
= Pitfalls

- Differences in ISA between machines (different instruction counts
on different machines)

- Differences in complexity between instructions

- Different values for a single computer (two different programs)
MFLOPS: Million Floating Point OPs Per Second
= Other instructions counted as overhead for the floating point
= Used by supercomputing community
Whetstones: Synthetic benchmark
= A program made-up to test specific performance features
Dhrystones: Synthetic competitor for Whetstone
= Made up to “correct” Whetstone’s emphasis on floating point
System Performance Evaluation Cooperative (SPEC)
= Selection of “real” programs for benchmark
» Taken from the C/Unix world

.

Relative Performance

1
Execution time,
Performance, Execution time,,

* Speedup =n = Performance, ~ Execution time,

» Performance, =

- Example

= Compare driving speeds. 34 mph old route and 46
mph on new
__speed,ew

=20 =135
speed,;; 34

= Compare based on driving time. 96 minutes old
route and 71 minutes on new

time 96
n=—->od_22—135
ftime, ., 71

=l
Measuring Performance

- Program execution time is best measure of
performance

- Wall clock time/response time/elapsed time
= Total time to complete a task (including disk

access, memory access, 1/0, etc.)

« CPU (execution) time
= Time spent just on CPU computation
s User CPU time — time spent on program
= System CPU time — time spent in OS

. .|
CPU Clocking

- Operation of digital hardware governed by a
constant-rate clock
s Clock cycles/ticks/periods
» Clock period: duration of a clock cycle
° e.g., 250PS = 0.25NnS = 250%x107=sec
- Clock frequency (rate): cycles per second
o e.g., 4.0GHz = 4000MHz = 4.0x109 Hz

|
CPU Time

* For a given program
= CPU Time = CPU clock cycles X clock cycle time

. CPU clock cycles
* LPU Time = Clock Rate

- Performance improvements
» Reduce number of clock cycles
= Increase clock rate

= Hardware designer must trade off between clock
cycle count and clock rate

.
CPU Clock Cycles

- Cycles related to number of instructions
= CPU clock cycles = # Instructions X CPI

= CPU Time = #Instructions X CPI X clock cycle time

. # Instructions x CPI
> CPU Time = Clock Rate

- Clock cycles per instruction (CPI)
= Average number of clock cycles per instruction
(given a program or program fragment)
= Determined by CPU hardware
= Different CPI for different instructions
- Average CPI affected by instruction mix

|

CPI Example

- Computer A: Cycle Time = 250ps, CPI = 2.0
- Computer B: Cycle Time = 500ps, CPI = 1.2

= Same ISA
- Which is faster, and by how much?

- Computer A:
> CPU time =1 x 2.0 x 250 ps = I x 500 ps

- Computer B:
> CPU time =1 x 1.2 x 500 ps = I x 600 ps

- Speedup

timeg;,,, IX600

timesgse I1x500

Dn:

A faster

= Computer A is 1.2 times faster, 20% speedup

e L
CPI Details

- Different instruction classes may have different
cycle time

Clock Cycles =) (CPI, xInstruction Count,)
i=1

- Weighted average CPI

cp|__ ClockCycles _ (CPIix

Instruction Count <

Instruction Countij

Instruction Count

\ }
|

Relative frequency
of instruction class

Performance Summary

» CPU Time = #Instructions X CPI X clock cycle time

Executiontime =7=ICxCPIx T

» T := CPU time

« IC := Instruction count

» CPI := clock cycles/instruction
- 1 := duration of clock period

. |
Example 3.1

- System clock of computer increased in frequency
from 700 MHz to 1.2 GHz.

- What is speedup? (assume no other factors)
» Speedup

_timeyq (ICXCPIXT)o1q _ 1/700
~ time,.y (ICXCPIXT)peyw 1/1200
- IC and CPI do not change because only clock was
adjusted

=1.71

- 3
RISC vs. CISC Designs

« CISC: Complex Instruction Set Computer
= Many complex instructions and addressing modes
= Some instructions take many steps to execute
> Not always easy to find best instruction for a task
- RISC: Reduced Instruction Set Computer
= Few, simple instructions, addressing modes
» Usually one word per instruction

= May take several instructions to accomplish what
CISC can do in one

= Complex address calculations may take several
instructions

= Usually has load-store, general register ISA

Memory Bottleneck

- Memory no longer expensive
- Design for speed

081 3086) 2004 pnium)

Clock Frequency 4.7 MHz 4 GHz ~1000
Clock Period 212 ns 200 pS ~1000
Memory Cycle Time 100 ns 70 NS 1.4

Clocks per Memory pe 280 -

Cycle

.«
Dealing with Memory Bottleneck

- Employ one or more levels of cache memory.

= Prefetch instructions and data into I-cache and D-
cache.

= OQut of order execution.
= Speculative execution.

- One word per instruction (RISC)

- Simple addressing modes (RISC)

» Load-Store architecture (RISC)

- Lots of general purpose registers (RISC)

.«
RISC Design Characteristics

- Simple instructions can be done in few clocks
= Simplicity may even allow a shorter clock period

- A pipelined design can allow an instruction to
complete in every clock period

- Fixed length instructions simplify fetch & decode

- The rules may allow starting next instruction
without necessary results of the previous

= Unconditionally executing the instruction after a
branch

= Starting next instruction before register load is
complete

s
More on RISC

Prefetch instructions

= Get instruction/data/location before needed in pipeline

Pipelining

= Beginning execution of an instruction before the previous
instruction(s) have completed. (Chapter 5.)

Superscalar operation

= Issuing more than one instruction simultaneously.

o Instruction-level parallelism (Chapter 5.)

Out-of-order execution

Delayed loads, stores, and branches

= Operands may not be available when an instruction
attempts to access them.

Register Windows

= ability to switch to a different set of CPU registers with a
single command. Alleviates procedure call/return overhead.
Discussed with SPARC (Chapter 3)

