
http://www.egr.unlv.edu/~b1morris/cpe300/

CPE300: Digital System

Architecture and Design
Fall 2011

MW 17:30-18:45 CBC C316

Register Transfer Notation

09192011

Outline

• Recap

• Register Transfer Notation (RTN)

• Logic Circuits for Register Transfer

2

General Register Machines

• Most common choice for general purpose
computers
▫ Load-store machines

• Registers specified by “small” address
▫ Close to CPU for speed and reuse for complex

operations

3

Instructions/Register Trade-Offs

• 3-address machines have shortest code but large
number of bits per instruction

• 0-address machines have longest code but small
number of bits per instruction

▫ Still require 1-address (push, pop) instructions

• General register machines use short internal register
addresses in place of long memory addresses

• Load-store machines only allow memory addresses
in data movement instructions (load, store)

• Register access is much faster than memory access

• Short instructions are faster

4

Addressing Modes

• Hardware support for determining access paths
to operands (in memory or registers)

▫ Some addresses may be known at compile time,
e.g. global vars.

▫ Others may not be known until run time, e.g.
pointers

▫ Addresses may have to be computed

 Record (struct) components:

 variable base(full address) + const.(small)

 Array components:

 const. base(full address) + index var.(small)

5

Simple RISC Computer (SRC)

• 32 general purpose registers (32 bits wide)

• 32 bit program counter (PC) and instruction
register (IR)

• 232 bytes of memory address space

• Use C-style array referencing for addresses

6

SRC Memory

• 232 bytes of memory address space

• Access is 32 bit words

▫ 4 bytes make up word, requires 4 addresses

▫ Lower address contains most significant bits
(msb) – highest least significant bits (lsb)

7

1000

W0 1001

W1 1002

W2 1003

W4 1004

1005

Bits 31 23 15 7 0

Address 1001 1002 1003 1004

Value W0 W1 W2 W3

SRC Basic Instruction Formats

• There are three basic instruction format types

• The number of register specific fields and length
of the constant field vary

• Other formats result from unused fields or parts

8

SRC Assembly Language

• Full Instruction listing available in Appendix B.5

• Form of line of SRC assembly code

Label: opcode operands ;comments

• Label: = assembly defined symbol
▫ Could be constant, label, etc. – very useful but not

always present

• Opcode = machine instruction or pseudo-op
• Operands = registers and constants

▫ Comma separated
▫ Values assumed to be decimal unless indicated (B, 0x)

9

Register Transfer Notation (RTN)
• Provides a formal means of describing machine

structure and function
▫ Mix natural language and mathematical expressions

• Does not replace hardware description languages.
▫ Formal description and design of electronic circuits

(digital logic) – operation, organization, etc.
• Abstract RTN

▫ Describes what a machine does without the how
▫ Overall effect on visible registers (ignores temporary)

• Concrete RTN
▫ Describe a particular hardware implementation (how

it is done)
▫ Detailed register transfer, specified by clock cycle

• Meta-language = language to describe machine
language

10

RTN Symbol Definitions (Appendix B.4)
 Register transfer: register on LHS stores value from RHS

[] Word index: selects word or range from named memory

<> Bit index: selects bit or bit range from named memory

n..m Index range: from left index n to right index m; can be decreasing

 If-then: true condition of left yields value and/or action on right

:= Definition: text substitution with dummy variables

Concatenation: bits on right appended to bits on left

: Parallel separator: actions or evaluations carried out simultaneously

; Sequential separator: RHS evaluated and/or performed after LHS

@ Replication: LHS repetitions of RHS are concatenated

{} Operation modifier: information about preceding operation, e.g., arithmetic type

() Operation or value grouping

= ≠ < ≤ ≥ > Comparison operators: produce binary logical values

+ -   Arithmetic operators

     Logical operators: and, or, not, xor, equivalence

11

Machine Static Properties

• Processor state items

▫ IR<31..0>

 32 bit register named IR

▫ R[0..31]<31..0>

 32 32-bit general purpose registers

• Create alias (:=)
▫ op<4..0> := IR<31..27>

▫ 5 most significant bits of IR are is called (defined)
as op

▫ Does not create new register

12

RTN Register Declaration

13

R[0..31]<31..0>:

Name of registers

Register # in square brackets

Range

lsb

Bit # in angle brackets

msb

Colon separator
- no ordering

RTN Memory Declaration

• Define word memory (big endian)

• Main memory state

14

Mem[0..232 - 1]7..0: 232 addressable bytes of memory

Dummy
parameter

Naming
operator

Concatenation
operator

All bits in register if
no bit index given

1000

W0 1001

W1 1002

W2 1003

W4 1004

1005

Bits 31 23 15 7

0

Address 1001 1002 1003 1004

Value W0 W1 W2 W3

M[x]31..0 := Mem[x]#Mem[x+1]#Mem[x+2]#Mem[x+3]:

Machine Dynamic Properties

• Calculated at run-time

• If-then conditions

• Displacement address

▫ if (rb=0) and if (rb≠0) occur at same time (:)

– no else statement

▫ Register R[0] used in calculation

• Relative address

15

disp<31..0> := ((rb=0)  c2<16..0> {sign extend}:

 (rb≠0)  R[rb] + c2<16..0> {sign extend, 2's comp.}):

rel<31..0> := PC<31..0> + c1<21..0> {sign extend, 2’s complement}:

Range of Addresses

• Direct addressing (rb=0)

▫ c2<16..0>=0 (positive displacement)

 0x00000000 – 0x0000FFFF

▫ c2<16..0>=1 (negative displacement)

 0xFFFF0000 – 0xFFFFFFFF

• Relative addressing (c1<21..0>)

▫ Max = 221-1

▫ Min = -221

▫ -221 + PC – PC + 221-1

• Note the difference between rb and R[rb]

16

RTN Fetch-Execute Cycle
• ii := instruction_interpretation:
• ie := instruction_execution :

• ii := (

RunStrt  Run  1:

Run  (IR  M[PC]: PC  PC + 4;

ie));

• ie := (
ld (:= op= 1)  R[ra]  M[disp]:

ldr (:= op= 2)  R[ra]  M[rel]:

. . .

stop (:= op= 31)  Run  0:

); ii

• Thus ii and ie invoke each other, as co-routines

17

Big switch
statement on
opcode

RTN Described Addressing Modes
Common Name Assembler

Syntax
Meaning Typical Usage

Register Ra R[t]  R[a] Temporary variable

Register indirect (Ra) R[t]  M[R[a]] Pointers to structures

Immediate #x R[t]  x Constant operand

Direct, absolute x R[t]  M[x] Global variable

Indirect (x) R[t] M[M[x]] Accessing value
through its pointer

Indexed, based,
displacement

x(Ra) R[t]  M[x + R[a]] Arrays and structures

Relative x(PC) R[t]  M[x + PC] Instructions or values
stored in program

Autoincrement (Ra)+ R[t]  M[R[a]];

R[a]  R[a] + 1;
Sequential access or
stack pop

Autodecrement -(Ra) R[a]  R[a]-1;

R[t]  M[R[a]];
Sequential access or
stack push

18

Addressing Mode Example 2.4

• Give contents of register R1 for different
addressing modes

19

Machine State

Registers Memory

PC 4000 Addr Data

R2 3000 1000 2000

2000 3000

3000 4000

4000 5000

5000 6000

Addressing Mode Instruction Contents of R1

Immediate MOV R1, #1000

Direct MOV R1, 1000

Indirect MOV R1, (1000)

Register Indirect MOV R1, (R2)

Indexed MOV R1, 1000(R2)

Relative MOV R1, 1000(PC)

Example 2.4

20

Addressing
Mode

Instruction Meaning Contents of R1

Immediate MOV R1, #1000 R1  1000 1000

Direct MOV R1, 1000 R1  M[1000] 2000

Indirect MOV R1, (1000) R1  M[M[1000]] 3000

Register Indirect MOV R1, (R2) R1  M[R[2]] 4000

Indexed MOV R1, 1000(R2) R1  M[1000 + R[2]] 5000

Relative MOV R1, 1000(PC) R1  M[1000 + PC]

6000

Specification Language Notes
• They allow the description of what without having to specify
how.

• They allow precise and unambiguous specifications, unlike
natural language.

• They reduce errors:
▫ errors due to misinterpretation of imprecise specifications written in

natural language
▫ errors due to confusion in design and implementation - “human

error.”

• Now the designer must debug the specification!
• Specifications can be automatically checked and processed by

tools.
▫ An RTN specification could be input to a simulator generator that

would produce a simulator for the specified machine.
▫ An RTN specification could be input to a compiler generator that

would generate a compiler for the language, whose output could be
run on the simulator.

21

Logic Circuits in ISA

• Logic circuits

▫ Gates (AND, OR, NOT) for Boolean expressions

▫ Flip-flops for state variables

• Computer design

▫ Circuit components support data transmission
and storage as well

22

Logic Circuits for Register Transfer

• RTN statement A  B

23

Multi-Bit Register Transfer

• Implementing A<m..1>  B<m..1>

24

Logic Gates and Data Transmission

• Logic gates can control transmission of data

25

2-Way Multiplexer

• Data from multiple sources can be selected for
transmission

26

m-Bit Multiplexer

• Multiplexer gate signals Gi may be produced by
a binary to one-out-of n decoder

▫ How many gates with how many inputs?

▫ What is relationship between k and n?

27

Separating Merged Data

• Merged data can be separated by gating at
appropriate time

▫ Can be strobed into a flip-flop when valid

28

Multiplexed Transfers using Gates and Strobes

• Selected gate and strobe determine which
Register is transferred to where.

▫ AC, and BC can occur together, but not AC,
and BD

29

Open-Collector Bus

• Bus is a shared datapath (as in previous slides)

• Multiplexer is difficult to wire

▫ Or-gate has large number of inputs (m x #gated
inputs)

• Open-collector NAND gate to the rescue

30

Wired AND Connection

• Connect outputs of 2 OC NAND gates

▫ Only get high value when both gates are open

31

Wired-OR Bus

• Convert AND to OR using DeMorgan’s Law

• Single pull-up resistor for whole bus

• OR distributed over the entire connection

32

Tri-State Gate

• Controlled gating

▫ Only one gate active at a time

▫ Undefined output when not active

33

Tri-State Bus

• Can make any register transfer R[i]  R[j]

• Only single gate may be active at a time

▫ Gi ≠ Gj

34

Heuring’s Rules of Buses

• Only one thing on bus during a clock cycle

▫ Gate-strobe paradigm

• Bus contents disappear at end of clock cycle

▫ Bus items are not stored unless strobed into a
register

• Clock period must be long enough to ensure
valid signals everywhere along bus

• What are contents of tri-state bus when enable
signal is low?

▫ Hi-Z – in disconnected “floating” state

35

Example: Registers + ALU with Single Bus

36

ALU-type units are
combinational logic
– have no memory

Example

Abstract RTN
R[3]  R[1]+R[2];

Concrete RTN
Y  R[2];

Z  R[1] + Y;

R[3]  A;

Control Sequence
R[2]out, Yin;

R[1]out, Zin;

Zout, R[3]in;

Note: 3 concrete steps to describe single abstract RTN step

Signal Timing

• Distinction between gating and strobing signal

• How is minimum clock period determined?

37

Example notes

• R[i]or Y can get the contents of anything but Y

• Result cannot be on bus containing operand

▫ Arithmetic units have result registers

• Only one of two operands can be on the bus at a
time

▫ Adder has register for one operand

38

RTN and Implementation

• Abstract RTN

▫ Describes what machine does
▫ R[3]  R[1] + R[2];

• Concrete RTN

▫ Describes how it is accomplished given particular
hardware implementation

▫ Y R[2]; Z  R[1] + Y; R[3]  Z;

• Control Sequence

▫ Control signal assertion sequence to produce
result

▫ R[2]out, Yin; R[1]out, Zin; Zout, R[3]in

39

Chapter 2 Summary

• Classes of computer ISAs

• Memory addressing modes

• SRC: a complete example ISA

• RTN as a description method for ISAs

• RTN description of addressing modes

• Implementation of RTN operations with digital
logic circuits

• Gates, strobes, and multiplexers

40

