CPE300: Digital System
Architecture and Design

Fall 2011
MW 17:30-18:45 CBC C316

Simple RISC Computer
09122011

http://www.egr.unlv.edu/~bimorris/cpe300/

Outline

* Recap
» Instruction Sets
» x-Address Machines

- Addressing Modes
- Simple RISC Computer

. |
Three Important Views of Computer

- Assembly/Machine Language Programmer

= Concerned with behavior and performance of
machine when programmed at lowest level
(machine language)

- Computer Architect

> Concerned with design and performance at (sub)
system levels

- Logic Designer
= Concerned with design at the digital logic level

. 4
Instruction Set Architecture (ISA)

- Instruction set: the collection of all machine
operations.

- Programmer sees set of instructions, along with
the machine resources manipulated by them.

- ISA includes
= Instruction set,
= memory, and
= programmer accessible registers of the system.

|

ISA Components

- Storage cells
> General and special purpose registers in the CPU
= Storage associated with I/O devices

- The Machine Instruction Set

= The instruction set is the entire repertoire of machine
operations

= Makes use of storage cells, formats, and results of the
fetch/execute cycle

» The Instruction Format
= Size and meaning of fields within the instruction
- The nature of the Fetch/Execute cycle

= Things that are done before the operation code is
known

3 Classes of Instructions

- Data movement instructions

> Move data from a memory location or register to
another memory location or register without
changing its form (load/store)

- Arithmetic and logic (ALU) instructions

= Changes the form of one or more operands to
produce a result stored in another location (add,
sub, mult)

- Branch instructions (control flow instructions)

» Any instruction that alters the normal flow of
control from executing the next instruction in
sequence (un/conditional branches)

R
Registers for Control

- Program counter usually contains the address of,
or "points to" the next instruction

- Condition codes may control branch
- Branch targets may be contained in separate

registers
Processor State Arithmetic Result
C — Carry
| C NV Z N — Negative
Program Counter Condition Codes V — overflow
Z - 7eros

Branch Targets

HLL Conditionals

- Typically no machine instruction mapping
» Conditions computed by arithmetic instructions
= Conditional branch on result in Assembly

- Program counter is changed to execute only
instructions associated with true conditions

C Language Assembly Language

if NUM==5 CMP.W #5, NUM
then SET=7 BNE L1
MOV.W #7, SET

[

Check CC Z-bit code (NUM - 5

L1

;the comparison
;conditional branch
;action if true

;action if false

== o)

Machine Instruction Encoding

» Instruction set must be converted into machine

instructions
= Bit patterns

that specify instruction fields (e.g.

opcode, operands, result, next instruction)

» Trade-offt

= Number of bits for specification

o Size/tlexibil

ity of instructions

= Also would .
word (RISC

ike entire encoding to fit into a single
approach)

N 1
Hypothetical Machines

- Classify machine based on 2 operand (1 result)
arithmetic (ALU) instruction

- 5 items to specity

= Operation to perform

= Location of first operand

= Location of second operand
> Location to store result
> Location of next instruction to execute

- The key issue is “how many of these are specified
by memory addresses, as opposed to being
specified implicitly”

. u
3,2,1,& O Address Instructions

+ 3 address instruction

= Specifies memory addresses for both operands
and the result

s R <~ Op1op Op2

- 2 address instruction
= Overwrites one operand in memory with the result
s Op2 < Op1op Op2

- 1 address instruction

= Single accumulator register to hold one operand &
the result (no address needed)

s Acc < Acc op Op1
- 0 address

= Uses a CPU register stack to hold both operands
and the result

= TOS <~ TOS op SOS (TOS is Top Of Stack, SOS is
Second On StackI))

Example 2.1

- Evaluate a = (b+c) *d-e
- for 3- 2- 1- and 0-address machines

- What is size of program and amount of memory
traffic in bytes?

Instruction Format Reminder
- 3-Address f

Instruction format

Bits: 8 24 24 24
* 2_AddreSS |adci I ResAddr Op1Addr Op2Addr

Which Where to LT
operation put result Where to find operands

Instruction format
Bits: 8 24 24
add [Op2Addr Op1Addr
Which / Where to find operands

» 1-Address

operation

Where to
put result

¢ O'AddreSS - '”;“’UC“OH fozrzwat

add Op1Addr

Which Where to find
operation operandi

Example 2.1

7))
a
@)
=
Q
=
=
)
n
S
|

Bytes size

3-Address

Instruction

Memory
Total

Fig. 2.8 General Register Machines

- Most common choice for general purpose
computers

- Registers specified by “small” address (3 to 6
bits for 8 to 64 registers)
s Close to CPU for speed and reuse for complex

t.
CPU
| | natriictio rmate
Memory : Registers | Instruction formats
I I
1 load I load R8, Op1 (R8 « Op1)
Opi1Addr:| Opt —T——> R8 ’ o f [onrs ,} :
| | load ‘ R8 ' Op1Addr
I I
I RE I
I I
I I
| V R4 | add R2, R4, R6 (R2 « R4 + RB6)
I I i = Y o
' ny 1 ladd | R [Ra [pe |
I I
I I
- I I
Nexti |« Program |
I counter I

1-1/2 Address Instructions

- “Small” register address = half address

- 1-1/2 addresses
= Load/store have one long & one short address

= 2-operand arithmetic instruction has 3 half
addresses S
Instruction formats
load R8, Op1 (R8 « Op1)
load R8 Op1Addr

add R2, R4, R6 (R2 < R4 + R6)

add R2 R4 R6

v

Real Machines

- General registers offer greatest flexibility
= Possible because of low price of memory

- Most real machines have a mixture of 3, 2, 1, 0, 1-1/2
address instructions

= A distinction can be made on whether arithmetic
instructions use data from memory

» Load-store machine

= Registers used for operands and results of ALU
instructions

= Only load and store instructions reference memory

- Other machines have a mix of register-memory and
memory-memory instructions

- s

Instructions/Register Trade-Offs

- 3-address machines have shortest code but large
number of bits per instruction

- 0-address machines have longest code but small
number of bits per instruction
= Still require 1-address (push, pop) instructions

- General register machines use short internal register
addresses in place of long memory addresses

- Load-store machines only allow memory addresses
in data movement instructions (load, store)

- Register access is much faster than memory access
» Short instructions are faster

. |
Addressing Modes

- Addressing mode is hardware 81(11pdport for a usetul
way of determining a memory address

- Different addressing modes solve different HLL
problems
> Some addresses may be known at compile time, e.g.
global vars.
= Others may not be known until run time, e.g. pointers
= Addresses may have to be computed
- Record (struct) components:
- variable base(full address) + const.(small)
- Array components:
- const. base(full address) + index var.(small)
- Possible to store constant values without using
another memory cell by storing them with or
adjacent to the instruction itself.

. =
HLL Examples of Structured Addresses

C language: Rec -> Count
= Rec is a pointer to a record: full address variable
= count is a field name: fixed byte offset, say 24 Count
C language: v [i] Rec b
» v is fixed base address of array: full address

constant
° 1 1s name of variable index: no larger than array

size
Variables must be contained in registers or
memory cells v
Small constants can be contained in the
instruction
Result: need for “address arithmetic.”

> E.g. Address of Rec -> Count is address of
Rec + offset of Count.

- =
Fig 2.9 Common Addressing Modes a-d

(a) Immediate addressing:

, , . Instr| Op 3
instruction contains
the operand
Memoaory
(b) Direct addressing:
instruction contains Instr | Op Addrl of A
address of operand » Operand
Memory
Address of address of A
(c) Indirect addressing: “\\ Operand j—
instruction contains \ Instr | Op I
address of address . w» Operand addr
'wo Memory Accesses!
of operand
. . . Instr| Op | R1
(d) Register direct addressing: +
register contains operand R4 Operand

() Register indirect addressing:

register contains address
of operand

(f} Displacement (based or
indexed) addressing:

address of operand =
register + constant

(g) Relative addressing:

address of operand =
PC + constant

Fig 2.9 Common Addressing Modes e-g

Memary
Instr{ Op | R2 | |
R2|[Operandaddr |
L w{ Operand
Memaory
Instr{ Op | R2 | 4 |
%—b Operand
R2 | ' I\
Operand address
Memory
Instr | Op | | 4, |
Operand
PC | ' I\

Operand address

Simple RISC Computer (SRC)

- 32 general purpose registers (32 bits wide)

- 32 bit program counter (PC) and instruction
register (IR)

- 232 bytes of memory address space

- Use C-style array referencing for addresses

The SRC CPU Main memory
31 0 7 0
RO|_ 32 32-bit __| 0
|__ general __| B
|__ purpose | bytes |
reqgisters of <
R31 " main 1. R[7] means contents
[memory] of register 7
PC
42 M([32] means contents
IR 2= of memory location 32

.
SRC Memory

- 232 bytes of memory address space
» Access 1s 32 bit words

s 4 bytes make up word, requires 4 addresses

= Lower address contains most significant bits
(msb) — highest least significant bits (Isb)

1000
WO 1001
Bits 31 23 15 7 0
W1l 1002
Address | 1001 1002 1003 1004
W2 1003
Value WO w1l W2 W3
w4 1004
1005

|
SRC Basic Instruction Formats

» There are three basic instruction format types

- The number of register specific fields and length
of the constant field vary

» Other formats result from unused fields or parts

31 2726 2221 0
op ra c1 Type 1

31 2726 2221 1716 0
op | ra | rb c2 _| Type 2

31 2726 2221 1716 1211 0
op | ra | rb re c3 _| Type 3

m\l

[Clj'cﬁZJ.'Z]l 0

Oplrafre] c2]
a1 Zxw 2 2 0 !
[CpTra] ci | i
3 ZPX 2N 6 0
[Cplma | |l unused | 1760
Notice the unused space Hnued
31 2726222157 1€ 1210 2 o
[Op | L[| (c3} unused Cond
unusead
31 2726222137 16 121! e 0
: [Cp|a | | e | (3} unused Cond|
B ook : 3 272822117 16 1211 0
Trade-off between (Cplrafro || unused J
- Fixed instruction size
- Wasted memory space 31 2726222117 40
TalOp|ra [o | (€3} unused vCount |
31 Zrze 21t 16 12 4 &
Ch3 - iOp|ra || re| &3 unused 00000
single instruction
per clock cycle 3 2726 c
= | ' (Cp | unused |

Copyright © 2004 Pearson Prentlce Hall, Inc.

|
SRC Characteristics

(=) Load-store design - only memory access through load/store
instructions

» (=) Operations on 32-bit words only (no byte or half-word
operations)

¢ (=) Only a few addressing modes are supported

» (=) ALU instructions are 3-registertype

(=) Branch instructions can branch unconditionally or conditionally
on whether the value in a specified registeris = 0, <> 0, >= 0, or <
0.

« (-) Branch-and-link instructions are similar, but leave the value of
current PC in any register, useful for subroutine return.

» (=) Can only branch to an address in a register, not to a direct
address.

+ (=) All instructions are 32-bits (1-word) long.

(=) — Similar to commercial RISC machines
(—) — Less powerful than commercial RISC machines

. =
SRC Assembly Language

- Full Instruction listing available in Appendix B.5

- Form of line of SRC assembly code

Label: opcode operands ;comments

- Label: = assembly defined symbol

= Could be constant, label, etc. — very useful but not
always present

» Opcode = machine instruction or pseudo-op
- Operands = registers and constants

- Comma separated
= Values assumed to be decimal unless indicated (B, 0x)

L.
SRC Load/Store Instructions

- Load/store design provides only access to
memory

- Address can be constant, constant+register, or
constant+PC

- Memory contents or address itself can be loaded

Instruction op ra b ¢2 Meaning Addressing Mode
Id r1, 32 1 1 0 32 R[1] « M[32] Direct

Id 122, 24(r4) 1 22 4 24 R[22] « M[24+R[4]] Displacement

st r4, 0(19) 3 4 9 0 M[R[9]] « R[4] Register indirect
lar7, 32 5 7 0 32 R[7] « 32 Immediate

Idr r12, -N\ 12 - -48 R[12] « M[PC -48] Relative

lar r3, 0 3 - 0 R[3] « PC Register (!)

Note: use of la to load constant

It
SRC ALU Instructions

Format Example Meaning

neg ra, rc neg ri, r2 ;Negate (r1 = -r2)

not ra, rc not r2, r3 ;Not (r2=r13")

add ra, rb, rc add r2, r3, r4 ;2’s complement addition
sub ra, rb, rc ;2’s complement subtraction
and ra, rb, rc ;Logical and

orra, rb, rc ;Logical or

addi ra, rb, c2 addiri, r3, 1 ; Immediate 2’s complement add
andi ra, rb, c2 ; Immediate logical and
orira, rb, c2 ;Immediate logical or

» Note:

= No multiply instruction (can be done based on addition)

- Immediate subtract not needed since constant in addi may be negative
(take care of sign bit)

.

SRC Branch Instruction
- Only 2 branch opcodes

br rb, rc, c3<2..0> ;branch to R[rb] 1f R[rc] meets
;the condition defined by c¢3<2..0>

brl ra, rb, rc, c3<2..0> ;R[ra] € PC, branch as above

« c3<2..0>, the 3 Isbs of ¢3, that define the branch condition

Isbs condition Assy language form Example
000 never brinv brlnv ré6
001 always br, brl brrs, brl r5
010 ifrc=0 brzr, brlzr brzr r2, r4
011 ifrc0 brnz, brinz

100 ifrc=o0 brpl, bripl

101 ifrc<o brmi, brlmi

» Note: branch target address is always in register R [rb]
= Must be placed in register explicitly by a previous instruction

Branch Instruction Examples

Ass’y Example instr. Meaning op ra r1b rc c3 Branch
lang. (2..0y Cond’n.
brinv brlnv r6 R[6] « PC 9 6 — — 000 never
br br r4 PC « R[4] 8 — 4 — 001 always
brl brl r6,r4 R[6] « PC; 9 6 4 — 001 always
PC « R[4]
brzr brzr r5,rl if (R[1]=0) 8§ — 5 1 010 =zero
PC « R[5]
brlzr brlzr r7,r5,r1 R[7] « PC; 9 7 5 1 010 zero
brnz brnz rl, 10 if (R[0]20) PC«R[1] 8 — 1 0 OIl nonzero
brinz brlnz r2,r1,r0 R[2] «- PC; 9 2 I 0 011 nonzero
if (R[0]%0) PC« R|[1]
brpl brpl 13, 12 if (R[2](0)PC«R[3] 8 — 3 2 100 plus
brlpl brlpl r4,r3,r2 R[4] « PC; 9 4 3 2 plus
if (R[2]10) PC« R3]
brmi brmi r0, rl if (R[1]<0) PC«~R[0] 8 — 0 I 101 minus
brlmi brlmi r3,10,r1 R[3] « PC; 9 3 0 1 minus

if (r1<0) PC<— R[0]

Unconditional Branch Example
- C code
o goto Label3

* SRC

lar r0O, Label3 ;load branch target address into register r0

br r0 ;branch

Label?3 ;branch address

Conditional Branch Example

» C definition
#define Cost 125
1f(X<0) x = -x;

- SRC assembly

.org 0
Cost: .equ 125 ;define symbolic constant
.org 1000 ;next word loaded at address 1000,
X: dw 1 ;reserve 1 word for variable X
.org 5000 ;program will be loaded at 50004,

lar 0, Over ;load address of false jump locations

1d rl, X ;get value of X 1into rl
brpl r0, rl ;branch to r0 1if rl >= 0
neg rl, rl ;negate rl value

Over:

|

Pseudo-Operations

- Not part of ISA but assembly specific
= Known as assembler directives

> No machine code generated — for use by
assembler, linker, loader

- Pseudo-ops
s .org = origin
° ,equ = equate
= .dx = define (word, half-word, byte)

. |
Synthetic Instructions

- Single instruction (not in machine language)
that assembler accepts and converts to single
instruction in machine language
= CLR RO andi rO, r0O, O
= MOVE DO, D1 or rl, r0, 0O

» (Other instructions possible besides and and or)

 Only synthetic instructions in SRC are

conditional branches
° brzr rl, r2 br rl, r2, 010

\/

if R[2] =0

Miscellaneous Instructions

* nop — no operation
= Place holder or time waster
= Essential for pipelined implementations
* stop
= Halts program execution, sets Run to zeros
= Usetul for debugging purposes

.
Register Transfer Notation (RTN)

- Provides a formal means of describing machine
structure and function
= Mix natural language and mathematical expressions
- Does not replace hardware description languages.
= Formal description and design of electronic circuits
(digital logic) — operation, organization, etc.
- Abstract RTN
= Describes what a machine does without the how
» Concrete RTN
= Describe a particular hardware implementation (how
it is done)
- Meta-language = language to describe machine
language

. »

RTN Symbol Definitions (Appendix B.4)

Register transfer: register on LHS stores value from RHS

[]

Word index: selects word or range from named memory

<> Bit index: selects bit or bit range from named memory
n..m Index range: from left index n to right index m; can be decreasing
> If-then: true condition of left yields value and/or action on right

= Definition: text substitution with dummy variables
Concatenation: bits on right appended to bits on left

Parallel separator: actions or evaluations carried out simultaneously

; Sequential separator: RHS evaluated and/or performed after LHS

@ Replication: LHS repetitions of RHS are concatenated
3 Operation modifier: information about preceding operation, e.g., arithmetic type
0 Operation or value grouping

=+ < <>> | Comparison operators: produce binary logical values

+-+x Arithmetic operators
AV—D= Logical operators: and, or, not, xor, equivalence

-«
Specification Language Notes

o ;ll“hey allow the description of what without having to specitfy
ow.

- They allow precise and unambiguous specifications, unlike
natural language.
- They reduce errors:

= errors due to misinterpretation of imprecise specifications written in
natural language

= errors due to confusion in design and implementation - “human
error.”
- Now the designer must debug the specification!

o Spelcifications can be automatically checked and processed by
tools.
> An RTN specification could be input to a simulator generator that
would produce a simulator for the specified machine.

> An RTN specification could be input to a compiler generator that
would generate a compiler for the language, whose output could be
run on the simulator.

- 4l
Logic Circuits in ISA

- Logic circuits
= Gates (AND, OR, NOT) for Boolean expressions
= Flip-flops for state variables

- Computer design

= Circuit components support data transmission
and storage as well

Logic Circuits for Register Transfer
« RTN statement2 < B

B 1
D Q D Q 0
B A Strobe 1
5 G > Q 0—_\—
A 1 S—
O—

Strobe —
(a) Hardware (b) Timing

Multi-Bit Register Transfer

- Implementing A<m..1> € B<m..1>

D Q D Q
1 1
> Q — Q
D Q D Q
2 2 e
S L g D Q 7 D Q
. . B{m..1) A{m..1)
)) >0 > Q
a7 G B
m m Strobe
D @ —> Q
B A
Strobe —
(a) Individual flip-flops (b) Abbreviated notation

Copyright © 2004 Pearson Prentice Hall, Inc.

Logic Gates and Data Transmission

- Logic gates can control transmission of data

data

gate J—

) gate—data
gate—0
Data gate data 2 datal1(2),

provided
data2(1)

data 1 :)D is zero
data D control—data data2
control—»data Data merge

control
Controlled complement

Copyright © 2004 Pearson Prentice Hall, Inc.

2-Way Multiplexer

- Data from multiple sources can be selected for
transmission

y
1 |
UB L\J
Y
:

Copyright © 2004 Pearson Prentice Hall, Inc.

R
m-Bit Multiplexer

An n-way gated merge An n-way multiplexer with decoder
m
Do—4) m
0 /
D
Go—1 J 7m 0 —Z“T®
D) —A4te
m » m
G, / %
D m
-1 —~41@
Iz
Dn 1+m ﬁ
) , £ Select
Gn~1 /m elec
(a) Multiplexer in terms of gates (b) Symbol abbreviation

- Multiplexer gate signals Gi may be produced by
a binary to one-out-of n decoder
- How many gates with how many inputs?
> What is relationship between k and n?

Separating Merged Data

- Merged data can be separated by gating at
appropriate time
= Can be strobed into a flip-flop when valid

. Pl €
B Ay
L

“m

Multiplexed Transfers using Gates and Strobes

- Selected gate and strobe determine which
Register is transferred to where.

s A«—C, and B«C can occur together, but not A<-C,
and B<D

Hold time

m
D Q—#4 m #—D Q \
c A L
r SA_> Q |I
h 0 O™ ot |-
_ c | |
= |
m B
D Q4 m ~—b Q | ‘
|
D B ! \
ropa

Copyright © 2004 Pearson Prentice Hall, Inc.

.

Open-Collector Bus

- Bus is a shared datapath (as in previous slides)

- Multiplexer is difficult to wire
= Or-gate has large number of inputs (m x #gated

inputs)
- Open-collector NAND gate to the rescue

+V

Inputs Output é

Ov Ov Open (Out = +V) +VL | —i Out]

Ov +V Open (Out=+V) v l)— —/ | B o.c. p—

+V Ov Open (Out=+V) ¥ _[_____]

+V 4V Closed (Out = 0v) N2

(a) Open-collector NAND (b) Open-collector NAND (c) Symbol

truth table

Copyright © 2004 Pearson Prentice Hall, Inc.

Wired AND Connection

- Connect outputs of 2 OC NAND gates
= Only get high value when both gates are open

+V

+V

|
T

310“‘iC

(a) Wired AND connection (b) With symbols
Switch Wired AND
a b output
Closed(0) | Closed(0) Ov (0)
Closed(0) | Open (1) Ov (0)
Open (1) Closed(0) Ov (0)
Open (1) Open (1) +V (1)
(c) Truth table

Copyright © 2004 Pearson Prentice Hall, Inc.

Wired-OR Bus

» Convert AND to OR using DeMorgan’s Law
- Single pull-up resistor for whole bus
- OR distributed over the entire connection

+V

B BT D -
01 oc. Tl o.c. =11 o.c.

Copyright © 2004 Pearson Prentice Hall, Inc.

Tri-State Gate

- Controlled gating
= Only one gate active at a time
» Undefined output when not active

| M +V
| B
I S
I S
| N
I :l »- R
| \\
Data —: —~— Out Data Out
[-, -7
! > ZD/,
| Pl Enable
sn 120

.- Enable N

(a) Tri-state gate structure (b) Tri-state gate symbol
Enable Data Output
0 0 Hi-Z
0 1 Hi-Z
1 0 0
1 1 1

(c) Tri-state gate truth table
Copyright © 2004 Pearson Prentice Hall, Inc.

Tri-State Bus

D Q m D Q i D Q L
R[O] R[1] « e R[n_ 1]

Sg1P @ G, S, @ G, S, TP @ G

n-1

Tri-state bus

- Can make any register transfer R[1] €« R[]]

- Only single gate may be active at a time
. Gi + GJ

. .|
Chapter 2 Summary

- Classes of computer ISAs

- Memory addressing modes

- SRC: a complete example ISA

» RTN as a description method for ISAs

« RTN description of addressing modes

- Implementation of RTN operations with digital
logic circuits

- Gates, strobes, and multiplexers

