
http://www.egr.unlv.edu/~b1morris/cpe300/

CPE300: Digital System

Architecture and Design
Fall 2011

MW 17:30-18:45 CBC C316

Instruction Set Architecture

09072011

Outline

• Recap

• Instruction Sets

• Registers

• x-Address Machines

• Addressing Modes

2

Machine Structures

• Coordination of many levels of abstraction

I/O system Processor

Compiler

Operating

System

(Windows 7)

Application (ex: browser)

Digital Design

Circuit Design

Instruction Set
 Architecture

Datapath & Control

Transistors

Memory
Hardware

Software Assembler

Slide from UC Berkeley CS61C

3

Software Engineer

Hardware Engineer

Computer Architect

Three Important Views of Computer

• Assembly/Machine Language Programmer

▫ Concerned with behavior and performance of
machine when programmed at lowest level
(machine language)

• Computer Architect

▫ Concerned with design and performance at (sub)
system levels

• Logic Designer

▫ Concerned with design at the digital logic level

4

Stored Program Concept

• Big idea – Everything is data!

▫ Bits are just bits – up to computer to decide how
to interpret

▫ Basic operating principle of every computer

5

The stored program concept says that the program is stored with

data in the computer’s memory. The computer is able to

manipulate it as data—for example, to load it from disk, move it

in memory, and store it back on disk.

Instruction Set Architecture (ISA)

• Instruction set: the collection of all machine
operations.

• Programmer sees set of instructions, along with
the machine resources manipulated by them.

• ISA includes
▫ instruction set,
▫ memory, and
▫ programmer accessible registers of the system.

• There may be temporary or scratch-pad memory
used to implement some function is not part of
ISA.
▫ ―Non Programmer Accessible.‖

6

Chapter 2: Machines, Machine

Languages, and Digital Logic
• Instruction sets

• Simple RISC Computer (SRC)

• Register Transfer Notation (RTN)

• Mapping of register transfers to digital logic
circuits

7

ISA Components
• Sometimes known as The Programmers Model of the

machine
• Storage cells

▫ General and special purpose registers in the CPU
▫ Many general purpose cells of same size in memory
▫ Storage associated with I/O devices

• The Machine Instruction Set
▫ The instruction set is the entire repertoire of machine

operations
▫ Makes use of storage cells, formats, and results of the

fetch/execute cycle
▫ i. e. Register Transfers

• The Instruction Format
▫ Size and meaning of fields within the instruction

• The nature of the Fetch/Execute cycle
▫ Things that are done before the operation code is known

8

Fig. 2.1 Programmer’s Models of

Various Machines
• Various numbers and types of storage cells

9

Fetch-Execute Cycle
• Instruction fetched from

memory

▫ Stored in instruction
register (IR)

• Instruction decoded
through control unit and
executed

• Next instruction is
available in program
counter (PC) register

▫ PC must be incremented
based on instruction size

▫ 2 byte instructions here
so PC incremented by 2

10

Instruction Specification

• Which operation to perform
• Op code: add, load, branch, etc.

add r0, r1, r3

• Where to find the operands
• In CPU registers, memory cells, I/O

locations, or part of instruction

add r0, r1, r3

• Place to store result
• Again CPU register or memory cell

add r0, r1, r3

• Location of next instruction
• The default is usually memory cell

pointed to by program counter (PC)

br endloop

11

3 Classes of Instructions
• Data movement instructions

▫ Move data from a memory location or register to
another memory location or register without changing
its form

▫ Load - source is memory and destination is register
▫ Store - source is register and destination is memory

• Arithmetic and logic (ALU) instructions
▫ Changes the form of one or more operands to produce

a result stored in another location
▫ Add, Sub, Shift, etc.

• Branch instructions (control flow instructions)
▫ Any instruction that alters the normal flow of control

from executing the next instruction in sequence
▫ Br Loc, Brz Loc2,—unconditional or conditional

branches

12

Memory Access: Read
• CPU applies desired address to Address lines A0-An-1
• CPU issues read command, R
• Memory returns the value at that address on Data lines
D0-Db-1 and asserts the COMPLETE signal

13

Read Timing

• Setup address

• Set R

• Data retrieved from memory

• Set COMPLETE

14

Address Bus Tttaddddddgtttttttttttttttt

R lllllrhhhflllllllllllllllll

Data Bus tttttttttttaddddddddddddgtt

COMPLETE lllllllllllllllllllrhhhflll

Memory Access: Write
• CPU applies desired address to Address lines A0-An-1 and and data to be

written on Data lines D0-Db-1
• CPU issues Write command, W
• Memory asserts the COMPLETE signal when the data has been written to

memory

15

Data Movement Instructions

• Lots of variation, even with one instruction type

• Notice differences in direction of data flow left-
to-right or right-to-left

16

Instruction Meaning Machine

MOV A, B Move 16 bits from memory location A to B VAX11

lwz R3, A Move 32 bits from memory location A to register 3 PPC601

li $3, 455 Load 32 bit integer 455 into register 3 MIPS R3000

mov R4, dout Move 16 bits from register 4 to port dout DEC PDP11

IN, AL, KDB Load byte from port KDB into accumulator Intel Pentium

LEA.L (A0), A2 Load address pointed at by A0 into A2 M68000

ALU Instructions

• Notice again the complete dissimilarity of both
syntax and semantics

• RISC machines operate on registers, why?
▫ Increased execution speed

17

Instruction Meaning Machine

MULF A, B, C
multiply the 32-bit floating point values at
memory locations A and B, store at C

VAX11

nabs r3, r1 Store abs value of r1 in r3 PP0661

ori $2, $1, 255
Store logical OR (immediate) of reg $ 1 with 255
into reg $2

MIPS R3000

DEC R2 Decrement the 16-bit value stored in reg R2 DEC PDP11

SHL AX, 4 Shift the 16-bit value in reg AX left by 4 bits Intel 8086

Branch Instructions

18

Instruction Meaning Machine

BLSS A, Tgt
Branch to address Tgt if the least significant bit
of memory location A is set (i.e. = 1)

VAX11

bun r2
Branch to location in R2 if result of previous
floating point computation was NaN

PP0661

beq $2, $1, 32
Branch to location (PC + 4 + 32) if contents of $1
and $2 are equal

MIPS R3000

SOB R4, Loop Decrement R4 and branch to Loop if R4 ≠ 0 DEC PDP11

JCXZ Addr Jump to Addr if contents of register CX = 0 Intel 8086

Eieio Enforce in-order execution of I/O Power PC

Registers for Control

• Program counter usually contains the address of,
or "points to" the next instruction

• Condition codes may control branch
• Branch targets may be contained in separate

registers

Processor State

C N V Z

Program Counter

Branch Targets

Condition Codes

•
•
•

HLL Conditionals

• Typically no machine instruction mapping

▫ Conditions computed by arithmetic instructions

▫ Assembly conditional branch on result

• Program counter is changed to execute only
instructions associated with true conditions

C Language Assembly Language

if NUM==5 CMP.W #5, NUM ;the comparison

then SET=7 BNE L1 ;conditional branch

MOV.W #7, SET ;action if true

L1 … ;action if false

Register “Personality”

• Architecture classes are often based on

▫ where the operands and result are located

▫ how they are specified by the instruction.

▫ They can be in CPU registers or main memory

Top
Second

Stack Arithmetic
Registers

Address
Registers

General Purpose
Registers

Push Pop

•
•
•

•
•
•

•
•
••

•
•

St ack Machine Accumulat or Machine General Regist er

Machine

Machine Instruction Encoding

• Instruction set must be converted into machine
instructions

▫ Bit patterns that specify instruction fields (e.g.
opcode, operands, result, next instruction)

• Trade-off

▫ Number of bits for specification

▫ Size/flexibility of instructions

▫ Also would like entire encoding to fit into a single
word (RISC approach)

22

Hypothetical Machines

• Classify machine based on 2 operand (1 result)
arithmetic (ALU) instruction

• 5 items to specify
▫ Operation to perform
▫ Location of first operand
▫ Location of second operand
▫ Location to store result
▫ Location of next instruction to execute

• The key issue is ―how many of these are specified
by memory addresses, as opposed to being
specified implicitly‖

23

4,3,2,1,& 0 Address Instructions
• 3 address instruction

▫ Specifies memory addresses for both operands and the
result

▫ R  Op1 op Op2
• 2 address instruction

▫ Overwrites one operand in memory with the result
▫ Op2  Op1 op Op2

• 1 address instruction
▫ Single accumulator register to hold one operand & the

result (no address needed)
▫ Acc  Acc op Op1

• 0 address
▫ Uses a CPU register stack to hold both operands and the

result
▫ TOS  TOS op SOS (TOS is Top Of Stack, SOS is Second On Stack)

• 4 address instruction
▫ 3 address instruction + explicit definition of next address

(rarely ever seen)

24

Fig. 2.3 The 4 Address Instruction

• Explicit addresses for operands, result, and next
instruction

• Example assumes 24-bit addresses

25

4 Address Example

• Instructions in memory (typo in book)
▫ Each address = 3 bytes (1 word)
▫ Total bytes for ALU instruction = 4 x 3 + 1 = 13
▫ Total words = 4 x 1 + 1 = 5

• Memory access
▫ Instruction fetch = 5 words
▫ Operands = 2 words (read)
▫ Result = 1 word (write)
▫ Address = 1 word (read)
▫ Total = 5 + 2 + 1 = 8 (ignore address)

• Rarely used because of large instruction size and
number of memory access makes

26

7

Fig 2.4 The 3 Address Instruction

• Address of next instruction kept in a processor
state register—the PC (Except for explicit
Branches/Jumps)

• Rest of addresses in instruction

27

3 Address Example

• Instructions in memory

▫ Each address = 3 bytes (1 word)

▫ Total bytes for ALU instruction = 3 x 3 + 1 = 10

▫ Total words = 3 x 1 + 1 = 4

• Memory access

▫ Instruction fetch = 4 words

▫ Operands = 2 words (read)

▫ Result = 1 word (write)

▫ Total = 4 + 2 + 1 = 7

28

Fig. 2.5 The 2 Address Instruction

• Result overwrites operand 2

• Needs only 2 addresses in the instruction but
less choice in placing data

29

2 Address Example

• Instructions in memory

▫ Each address = 3 bytes (1 word)

▫ Total bytes for ALU instruction = 2 x 3 + 1 = 7

▫ Total words = 2 x 1 + 1 = 3

• Memory access

▫ Instruction fetch = 3 words

▫ Operands = 2 words (read)

▫ Result = 1 word (write)

▫ Total = 3 + 2 + 1 = 6

30

Fig. 2.6 1 Address Instructions

• Special CPU, the accumulator, supplies 1
operand and stores result

• One memory address used for other operand

31

Accumulator Example

• Instructions in memory

▫ Each address = 3 bytes (1 word)

▫ Total bytes for ALU instruction = 1 x 3 + 1 = 4

▫ Total words = 1 x 1 + 1 = 2

• Memory access

▫ Instruction fetch = 2 words

▫ Operands = 1 words (read)

▫ Total = 2 + 1 = 3 (wrong!)

▫ Must load/store contents of accumulator
 lda OpAddr sta OpAddr

▫ Total = 3 + accumulator access (e.g. 4 or 5)

32

Fig. 2.7 The 0 Address Instruction

• Uses a push down stack in CPU

• Arithmetic uses stack for both operands. The
result replaces them on the TOS

• Computer must have a 1 address instruction to
push and pop operands to and from the stack

33

Stack Example

• Instructions in memory
▫ Each address = 3 bytes (1 word)
▫ Total bytes for ALU instruction = 1 = 1
▫ Total words = 1

 Single add op is usually not sufficient, require multiple
instructions to complete

• Memory access
▫ Instruction fetch = 1 words
▫ Need to manage contents on top of stack

 push pop

▫ Total = 1 + push/pop (e.g. 2, 3, 4)

• Extra instructions are required to get data to the
stack

34

Example 2.1

• Evaluate a = (b+c)*d-e

• for 3- 2- 1- and 0-address machines

• How many instructions and memory addresses
are needed?

35

3-Address 2-Address 1-Address 0-Address

Fig. 2.8 General Register Machines

• Most common choice for general purpose
computers

• Registers specified by ―small‖ address (3 to 6
bits for 8 to 64 registers)
▫ Close to CPU for speed and reuse for complex

operations

36

1-1/2 Address Instructions

• ―Small‖ register address = half address

• 1-1/2 addresses

▫ Load/store have one long & one short address
▫ 2-operand arithmetic instruction has 3 half

addresses

37

General Register Example

• More complex encoding

▫ Assume 32 registers = 5 bits to specify

38

bits 8 5 24 Total = 37 = 2 words

bits 8 5 Total = 23 = 1 words 5 5

Real Machines

• General registers offer greatest flexibility

▫ Possible because of low price of memory

• Most real machines have a mixture of 3, 2, 1, 0, 1-1/2
address instructions

▫ A distinction can be made on whether arithmetic
instructions use data from memory

• Load-store machine

▫ Registers used for operands and results of ALU
instructions

▫ Only load and store instructions reference memory

• Other machines have a mix of register-memory and
memory-memory instructions

39

Instructions/Register Trade-Offs

• 3-address machines have shortest code but large
number of bits per instruction

• 0-address machines have longest code but small
number of bits per instruction

▫ Still require 1-address (push, pop) instructions

• General register machines use short internal register
addresses in place of long memory addresses

• Load-store machines only allow memory addresses
in data movement instructions (load, store)

• Register access is much faster than memory access

• Short instructions are faster

40

Addressing Modes
• Addressing mode is hardware support for a useful

way of determining a memory address
• Different addressing modes solve different HLL

problems
▫ Some addresses may be known at compile time, e.g.

global vars.
▫ Others may not be known until run time, e.g. pointers
▫ Addresses may have to be computed

 Record (struct) components:
 variable base(full address) + const.(small)

 Array components:
 const. base(full address) + index var.(small)

• Possible to store constant values without using
another memory cell by storing them with or
adjacent to the instruction itself.

41

HLL Examples of Structured Addresses

• C language: rec -> count
▫ rec is a pointer to a record: full address variable
▫ count is a field name: fixed byte offset, say 24

• C language: v[i]
▫ v is fixed base address of array: full address

constant
▫ i is name of variable index: no larger than array

size
• Variables must be contained in registers or

memory cells
• Small constants can be contained in the

instruction
• Result: need for ―address arithmetic.‖

▫ E.g. Address of Rec -> Count is address of Rec +
offset of count.

42

Rec 

Count

v 

v[i]

Fig 2.9 Common Addressing Modes a-d

43

Two Memory Accesses!

Fig 2.9 Common Addressing Modes e-g

44

