CPE300: Digital System
Architecture and Design

Fall 2011
MW 17:30-18:45 CBC C316

Instruction Set Architecture
09072011

http://www.egr.unlv.edu/~bimorris/cpe300/

Outline

* Recap

» Instruction Sets

- Registers

» Xx-Address Machines
- Addressing Modes

. ||
Machine Structures

Application (ex: browser) Software Engineer
t | Operating
— compiler System
Assembler (Windows 7)

|Instruction Set
Architecture

Processor |Memory |I/O system

Hardware

Computer Architect
Datapath & Control /
Circuit Design
Transistors Hardware Engineer

- Coordination of many levels of abstraction

Slide from UC Berkeley CS61C

. 4
Three Important Views of Computer

- Assembly/Machine Language Programmer

= Concerned with behavior and performance of
machine when programmed at lowest level
(machine language)

- Computer Architect

> Concerned with design and performance at (sub)
system levels

- Logic Designer
= Concerned with design at the digital logic level

|

Stored Program Concept
- Big idea — Everything is data!

The stored program concept says that the program is stored with
data in the computer’s memory. The computer is able to
manipulate it as data—for example, to load it from disk, move it
In memory, and store it back on disk.

= Bits are just bits — up to computer to decide how
to interpret

= Basic operating principle of every computer

Instruction Set Architecture (ISA)

- Instruction set: the collection of all machine
operations.

- Programmer sees set of instructions, along with
the machine resources manipulated by them.

- ISA includes
= Instruction set,
= memory, and
= programmer accessible registers of the system.

- There may be temporary or scratch-pad memory
used to implement some function is not part of
ISA.

= “Non Programmer Accessible.”

Chapter 2: Machines, Magc ine m

Languages, and Digital Logic
- Instruction sets

- Simple RISC Computer (SRC)

- Register Transfer Notation (RTN)

- Mapping of register transfers to digital logic
circuits

ISA Components

- Sometimes known as The Programmers Model of the
machine

Storage cells

= General and special purpose registers in the CPU

= Many general purpose cells of same size in memory

= Storage associated with I/O devices

The Machine Instruction Set

= The instruction set is the entire repertoire of machine
operations

= Makes use of storage cells, formats, and results of the
fetch/execute cycle

s 1. e. Register Transfers

The Instruction Format

= Size and meaning of fields within the instruction

The nature of the Fetch/Execute cycle

= Things that are done before the operation code is known

M6800
(1975)

7 0

15

6 special_|
| _purpose |
registers

]Status

I
L 276 bytes
_ of main _|
memory
B cap?city 7

Fewer
than 100
instructions

Pentium 4 18086
(2000) (1979)
31 15 87 0O
B | EBX | paa
IX ECX registers
SP EDX |
PC a4
ESP Address —
EBP | and
EST count
EDI registers |
0 ~ Memory
- segment —
| registers _|
2%
31
[EP
EFLAGS FLAGS
£-8 special purpose registers|
8.80-bit fioating point regss,
8 64-Bit MMX registers
8 128-bit vector registers
T
20
More than 120 [201 g‘gﬁs]
instructions B -
(200 for Pentium) L g;f;ggg =
1

Fig. 2.1 Programmer’s

Various Machines
- Various numbers and types of storage cells

AX
BX
CX
DX

SP

_|BP

Sl
DI

cs
DS
SS

ES
FS

GS

VAX11 PPC G4
(1981) (1999)
0 0 63
! RO [s |
| 12 general_| | B4-bit |
purpose | R11 floating point
registers 7| o regllsters
FP o 127
SP oy
PC 32 128-bit—
| vector __|
processing
PSW " registers ™|
1
0 31
T 0 I
2% bytes | |32 32-bit —|
| ofmain _| | general __|
| _memory | purpose
caplacny 2%2_ 1 [registers |
1
More than 300
instructions 0 31
T
iMore than 100
32-bit special
purpose
registers
1
T
L 2% bytes —|
| ofmain _|
memory
— capacity
|
- . ' More than 250
22— 1 (2° for Pentium) instructions

31

odels o

Copyright © 2004 Pearson Prentice Hall, Inc.

0

31

0

Fetch-Execute Cycle

 Instruction fetched from OR— R
memory 31 0 ;

= Stored in instruction ‘
register (IR) — Vel —

« Instruction decoded | eosesl
through control unit and —— (0011 101 000 000 100| 4D0D €—
executed - 5 .

- Next instruction is PC 4000 @ .
available in program '
counter (PC) register IR ;211 101 000 000 103 - 2921
= PC must be incremented | 15 0

based on instruction size AL * A
. Cartrol signals | /
LY T / L

° 2 byte instructions here [S~ Y

. e control unit /}
so PC incremented by 2 . i S o

. ul

Instruction Specification

* Which operation to perform addro, r1, 13
* Op code: add, load, branch, etc.
« Where to find the operands AT, w1

« In CPU registers, memory cells, I/O
locations, or part of instruction

e Place to store result add ro, 1, 13 >

« Again CPU register or memory cell

* Location of next instruction br endloop
* The default is usually memory cell
pointed to by program counter (PC)

|
3 Classes of Instructions

» Data movement instructions

> Move data from a memory location or register to

another memory location or register without changing
its form

= Load - source is memory and destination is register
= Store - source is register and destination is memory
- Arithmetic and logic (ALU) instructions

= Changes the form of one or more operands to produce
a result stored in another location

- Add, Sub, Shift, etc.
- Branch instructions (control flow instructions)

» Any instruction that alters the normal flow of control
from executing the next instruction in sequence

= Br Loc, Brz Loc2,—unconditional or conditional
branches

Memory Access: Read

- CPU applies desired address to Address lines A0-An-1
» CPU issues read command, R

+ Memory returns the value at that address on Data lines
DO-Db-1 and asserts the COMPLETE signal

Data bus Address bus
CPU Main memory
8 Address
<«
n

7 > Aj-A, 0
\ D,-D 1
Registers | ¢ b// sl TR >
3

» R

/ » W 2" -1
< \l’ // COMPLETE

Control signals

Copyright © 2004 Pearson Prentice Hall, Inc.

. |
Read Timing

- Setup address

* Set R

- Data retrieved from memory
» Set COMPLETE

Address Bus h—hﬁ—* :: : : :: P
R R
pata Bus T ——————{

COMPLETE /I - \ —

Memory Access: Write

- CPU applies desired address to Address lines 20-An-1 and and data to be
written on Data lines DO-Db-1

- CPU issues Write command, W
- Memory asserts the COMPLETE signal when the data has been written to

memory
Data bus Address bus
CPU Main memory
8 Address
< >
n

7 > Aj- A, 0
\ D,-D 1
Registers b/ sl TR >
3

» R

/ » W 2" -1
< \J’ // COMPLETE

Control signals

Copyright © 2004 Pearson Prentice Hall, Inc.

|

Data Movement Instructions

—>

MOV A, B Move 16 bits from memory location A to B VAX11

lwz R3, A Move 32 bits from memory location A to register 3 PPC601

1i $3, 455 Load 32 bit integer 455 into register 3 MIPS R3000
mov R4, Sout Move 16 bits from register 4 to port dout DEC PDP11
IN, AL, KDB Load byte from port KDB into accumulator Intel Pentium
LEA.L (AO), »> Load address pointed at by Ao into A2 M68000

- Lots of variation, even with one instruction type

» Notice differences in direction of data flow left-
to-right or right-to-left

v

ALU Instructions

multiply the 32-bit floating point values at

HORE A B C memory locations A and B, store at C V2.0

nabs r3, rl Store abs value of r1in r3 PP0661
N iSI’lcS;‘iel:gg;(;al OR (immediate) of reg $ 1 with 255 MIPS R3000
DEC R2 Decrement the 16-bit value stored in reg R2 DEC PDP11
SHL AX, 4 Shift the 16-bit value in reg AX left by 4 bits Intel 8086

- Notice again the complete dissimilarity of both
syntax and semantics

- RISC machines operate on registers, why?
» Increased execution speed

- s

Branch Instructions

Branch to address Tgt if the least significant bit

BLSS A, Tgt . . .
7 of memory location A is set (i.e. = 1) VT
bun 2o Bran.ch to lpcatlon in Rg if result of previous PPO661
floating point computation was NaN
w67, 91 5 Branch to location (PC + 4 + 32) if contents of $1 MIPS R3000
and $2 are equal
SOB R4, Loop Decrement R4 and branch to Loop if R4 # 0 DEC PDP11
JCXZ Addr Jump to Addr if contents of register CX = 0 Intel 8086

Eieio Enforce in-order execution of I/0O Power PC

Registers for Control

- Program counter usually contains the address of,
or "points to" the next instruction

- Condition codes may control branch

- Branch targets may be contained in separate
registers

Processor State

CNV Z
Program Counter Condition Codes

Branch Targets

o
HLL Conditionals

- Typically no machine instruction mapping
» Conditions computed by arithmetic instructions
= Assembly conditional branch on result

- Program counter is changed to execute only
instructions associated with true conditions

C Language Assembly Language

if NUM==5 CMP.W #5, NUM ;the comparison
then SET=7 BNE L1 ;conditional branch
MOV.W #7, SET ;action if true

L1 ;action if false

Register “Personality”

- Architecture classes are often based on
= where the operands and result are located
= how they are specified by the instruction.

> They can be in CPU registers or main memory

Stack Arithmetic Address General Purpose
Registers Registers Reqgisters
Push Pop
i
10D
Second
; | : 1 ——
| | » 4
A \ /
l
Stack Machine Accumulator Machine General Register

Machine

=l

Machine Instruction Encoding

» Instruction set must be converted into machine

instructions
= Bit patterns

that specify instruction fields (e.g.

opcode, operands, result, next instruction)

» Trade-offt

= Number of bits for specification

o Size/tlexibil

ity of instructions

= Also would .
word (RISC

ike entire encoding to fit into a single
approach)

1|
Hypothetical Machines

- Classify machine based on 2 operand (1 result)
arithmetic (ALU) instruction

- 5 items to specity

= Operation to perform

= Location of first operand

= Location of second operand
> Location to store result
> Location of next instruction to execute

- The key issue is “how many of these are specified
by memory addresses, as opposed to being
specified implicitly”

-
4. 3,2,1,& 0 Address Instructions

- 3 address instruction

: Speclitfies memory addresses for both operands and the
resu

= R <« Op1op Op2

2 address instruction

= Overwrites one operand in memory with the result
= Op2 < Op1op Op2

1 address instruction

= Single accumulator re%ister to hold one operand & the
result (no address needed)

= Acc < Acc op Op1
0 address

- Usesl ta CPU register stack to hold both operands and the
resu

= TOS <~ TOS op SOS (TOS is Top Of Stack, SOS is Second On Stack)
4 address instruction

= 3 address instruction + explicit definition of next address
?rarely ever seen)

Fig. 2.3 The 4 Address Instruction

- Explicit addresses for operands, result, and next
instruction

- Example assumes 24-bit addresses

Memory CPU add, Res, Op1, Op2, Nexti (Res « Op1 + Op2)

|
Op1Addr:| Opt : [
Op2Addr:| Op2 i :
|
|
l
ResAddr:| Res |« I :

NextiAddr:| Nexti

Instruction format
Bits: 8 24 24 24 24
add ResAddr Op1Adds Op2Addr NextiAddt

Which Where to Where to find
i B Where to find operands - s "
operation put result RN, s LI ST R NNt next Instruction

. =
4 Address Example |

- Instructions in memory (typo in book)
» Each address = 3 bytes (1 word)
= Total bytes for ALU instruction=4x3 + 1 =13
- Total words=4x1+1=5

23 / 0
 Memory access v -
= Instruction fetch = 5 words Operand 1 address
= Operands = 2 words (read) Operand 2 address
. Result address
ReSUIt =1 WOI'd (erte) Address of next instruction

= Address = 1 word (read)
» Total = 5 + 2 + 1 = 8 (ignore address)

- Rarely used because of large instruction size and
number of memory access makes

Fig 2.4 The 3 Address Instruction

- Address of next instruction kept in a processor
state register—the PC (Except for explicit
Branches/Jumps)

» Rest of addresses in instruction

Memory CPU add, Res, Op1, Op2 (Res « Op2 + Op1)
[I
Op1Addr:| Op1 ﬁ?_‘ :
Op2Addr:| Op2 T |
I I
ResAddr:| Res |« : :
ul :
I I
_ : : Program |, 4:
NextiAddr:| Nexti |« ' counter i
I Wheretofind |

: next instruction !

Instruction format
Bits: 8 24 24 24

’ add \ ResAddr Op1Addr Qp2Addr
Which Where to

' NMhere to find opnerands
operation put result Where to find operands

H
3 Address Example = = - -
add | R :SAd Op1Addr Op2Addr .
& 1|‘ Where to find operands

- Instructions in memory
» Each address = 3 bytes (1 word)
= Total bytes for ALU instruction=3x3 + 1 =10
- Total words=3x1+1=4
- Memory access
= Instruction fetch = 4 words
= Operands = 2 words (read)
= Result = 1 word (write)
« Total=4+2+1=7

Fig. 2.5 The 2 Address Instruction

- Result overwrites operand 2

- Needs only 2 addresses in the instruction but
less choice in placing data

Memory CPU add Op2, Op1 (Op2 « Op2 + Op1)
R |
Op1Addr;| Op1 ; :
I I
I I
|
Op2Addr: |Op2,Res [¢— :
. I I
. I I
I I
: Program '
NextiAddr:| Nexti |« | counter 24:
I Where to find |
: next instruction :

Instruction format
Bits: 8 24 24
| add | OpeAddr Op1Addr

Which Where to find operands
operation

Where to
put result

H
2 Address Example

- Instructions in memory
- Each address = 3 bytes (1 word)
> Total bytes for ALU instruction=2x3+1=7
- Total words=2x1+1=3
- Memory access
= Instruction fetch = 3 words
= Operands = 2 words (read)
= Result = 1 word (write)
» Total=3+2+1=6

Fig. 2.6 1 Address Instructions

- Special CPU, the accumulator, supplies 1
operand and stores result

- One memory address used for other operand

Memory CPU add Op1 (Acc « Acc + Op1)

Op1Addr:| Opf

Where to find
operand2, and

I
|
I
I
I
I
I
I

where to put result

|

Program '

NextiAddr:| Nexti [€—— counter |24
|

|

' Where to find
next instruction

Instruction format
Bits: 8 24
add Op1Addr

Which ~ Where to find
operation operandi

e

Accumulator Example

- Instructions in memory SISt ST
» Each address = 3 bytes (1 word)
> Total bytes for ALU instruction=1x3 +1=4
- Totalwords=1x1+1=2
- Memory access
- Instruction fetch = 2 words
> Operands = 1 words (read)
- Total=2+1=3 (wrong!)
» Must load/store contents of accumulator
* 1lda OpAddr sta OpAddr
» Total = 3 + accumulator access (e.g. 4 or 5)

3
Fig. 2.7 The 0 Address Instruction

- Uses a push down stack in CPU
- Arithmetic uses stack for both operands. The
result replaces them on the TOS

- Computer must have a 1 address instruction to
push and pop operands to and from the stack

Memory CPU push Op1 (TOS « Op1)
o= = /
OpiAddr:| Op1 . S i
. I 1
: * * Format \ push ’ Op1Addr
! TOS !
! ! Operation esult
| SOS |
I ete. \} :
| I s o T
I | add (TOS « TOS + SOS)
' ; Bits: 8
[Stack I = ‘ < ’
| | Format acla
NextiAddr:| Nexti | Program |4 : S
| counter Which operation
- |
: Where to find i Where to find operands,

. _ _ hextinstruction) and where to put result

(on the stack)

|
Stack Example

» Instructions in memory
- Each address = 3 bytes (1 word)
> Total bytes for ALU instruction =1=1
= Total words = 1

- Single add op is usually not sufficient, require multiple
instructions to complete

« Memory access
o Instruction fetch = 1 words
> Need to manage contents on top of stack
* push pop
= Total = 1 + push/pop (e.g. 2, 3, 4)
- Extra instructions are required to get data to the
stack

Example 2.1

- Evaluate a = (b+c) *d-e
- for 3- 2- 1- and 0-address machines

3-Address

- How many instructions and memory addresses
are needed?

Fig. 2.8 General Register Machines

- Most common choice for general purpose
computers

- Registers specified by “small” address (3 to 6
bits for 8 to 64 registers)
s Close to CPU for speed and reuse for complex

t.
CPU
| | natriictio rmate
Memory : Registers | Instruction formats
I I
1 load I load R8, Op1 (R8 « Op1)
Opi1Addr:| Opt —T——> R8 ’ o f [onrs ,} :
| | load ‘ R8 ' Op1Addr
I I
I RE I
I I
I I
| V R4 | add R2, R4, R6 (R2 « R4 + RB6)
I I i = Y o
' ny 1 ladd | R [Ra [pe |
I I
I I
- I I
Nexti |« Program |
I counter I

1-1/2 Address Instructions

load R8, Op1 (R8 « Op1)
| load | R8 | Op1Addr

- “Small” register address = half address

add R2, R4, R6 (R2 « R4 + R6)
ladd | R2 | R4 | Re |

- 1-1/2 addresses
= Load/store have one long & one short address

= 2-operand arithmetic instruction has 3 half
addresses

General Register Example

- More complex encoding
= Assume 32 registers = 5 bits to specify

Instruction formats

load R8, Op1 (R8 « Op1)
load R8 Op1Addr
bits 8 5 24 Total = 37 = 2 words

add R2, R4, R6 (R2 « R4 + R6)
add R2 R4 R6
bits 8 5 5 5 Total

23 1 words

. »

Real Machines

- General registers offer greatest flexibility
= Possible because of low price of memory

- Most real machines have a mixture of 3, 2, 1, 0, 1-1/2
address instructions

= A distinction can be made on whether arithmetic
instructions use data from memory

» Load-store machine

= Registers used for operands and results of ALU
instructions

= Only load and store instructions reference memory

- Other machines have a mix of register-memory and
memory-memory instructions

o

Instructions/Register Trade-Offs

- 3-address machines have shortest code but large
number of bits per instruction

- 0-address machines have longest code but small
number of bits per instruction
= Still require 1-address (push, pop) instructions

- General register machines use short internal register
addresses in place of long memory addresses

- Load-store machines only allow memory addresses
in data movement instructions (load, store)

- Register access is much faster than memory access
» Short instructions are faster

. |
Addressing Modes

- Addressing mode is hardware 81(11pdport for a usetul
way of determining a memory address

- Different addressing modes solve different HLL
problems
> Some addresses may be known at compile time, e.g.
global vars.
= Others may not be known until run time, e.g. pointers
= Addresses may have to be computed
- Record (struct) components:
- variable base(full address) + const.(small)
- Array components:
- const. base(full address) + index var.(small)
- Possible to store constant values without using
another memory cell by storing them with or
adjacent to the instruction itself.

- |
HLL Examples of Structured Addresses

C language: rec -> count
= rec is a pointer to a record: full address variable
= count is a field name: fixed byte offset, say 24 T Count
C language: v[i] Rec _s
- v is fixed base address of array: full address
constant
° 11s name of variable index: no larger than array
size
Variables must be contained in registers or
memory cells v

Small constants can be contained in the
instruction
Result: need for “address arithmetic.”

= E.g. Address of Rec -> Count is address of Rec +
offset of count.

v[i]

. - ||
Fig 2.9 Common Addressing Modes a-d

(a) Immediate addressing:

, , . Instr| Op 3
instruction contains
the operand
Memoaory
(b) Direct addressing:
instruction contains Instr | Op Addrl of A
address of operand » Operand
Memory
Address of address of A
(c) Indirect addressing: “\\ Operand j—
instruction contains \ Instr | Op I
address of address . w» Operand addr
'wo Memory Accesses!
of operand
. . . Instr| Op | R1
(d) Register direct addressing: +
register contains operand R4 Operand

() Register indirect addressing:

register contains address
of operand

(f} Displacement (based or
indexed) addressing:

address of operand =
register + constant

(g) Relative addressing:

address of operand =
PC + constant

Fig 2.9 Common Addressing Modes e-g

Memary
Instr{ Op | R2 | |
R2|[Operandaddr |
L w{ Operand
Memaory
Instr{ Op | R2 | 4 |
%—b Operand
R2 | ' I\
Operand address
Memory
Instr | Op | | 4, |
Operand
PC | ' I\

Operand address

