Logistics

- **Thursday Oct. 4th**
 - In normal lecture (13:00-14:15)
 - 1 hour and 15 minutes
- **Chapters 1-2.6**
- Closed book, closed notes
- No calculators
- Must show work and be legible for credit

- Boolean Axioms and Theorems will be provided
Preparation

• Read the book (2nd Edition)
 ▫ Then, read it again
• Do example problems
 ▫ Use both Harris and Roth books
• Be sure you understand homework solutions

• Come visit during office hours for questions
Chapter 1.2 Managing Complexity

• Abstraction – hiding details that aren’t important

• Digital discipline – restricting design choices to digital logic for more simple design

• Hierarchy – dividing a system into modules and further submodules for easier understanding

• Modularity – modules have well-defined functions and interfaces for easy interconnection

• Regularity – uniformity among modules for reuse
Chapter 1.3 Digital Abstraction

- Analog \rightarrow digital computing

- Information in a discrete variable
 - $D = \log_2 N$ bits

- Introduction to binary variables

- Example 1: Information in 9-state variable
 - $D = \log_2 9 = 3.1699$ bits
 - Note 3 bits can represent 8 values so requires just more than 3 bits
Chapter 1.4 - Number Systems

• Number representation
 ▫ N-digit number \(\{a_{N-1} a_{N-2} \ldots a_1 a_0\} \) of base \(R \) in decimal
 • \(a_{N-1} R^{N-1} + a_{N-2} R^{N-2} + \ldots + a_1 R^1 + a_0 R^0 \)
 • \(= \sum_{i=0}^{N-1} a_i R^i \)
 ▫ Range of values

• Base 2, 10, 16, etc. conversion
 ▫ Often from base \(R_0 \) to decimal to \(R_1 \)
 ▫ Two methods:
 • Repeatedly remove largest power of 2
 • Repeatedly divide by two
Number Examples

• Convert 10110_2 to decimal

• Convert 10110_2 to base 5

• Convert 10110_2 to hex and octal
Chapter 1.4.5 - Binary Addition

- Signed number representation
 - Unsigned, two’s complement, sign-magnitude

- Addition
 - Binary carries
 - Potential for overflow

- Subtraction
 - Find negative of number and add

- Zero/Sign extension
Example Binary Addition

- Assume 6-bit 2’s complement and indicate if overflow occurs
- Add $13_{10} + 11_{10}$

- Add $21_{10} + 11_{10}$

- Add $-25_{10} + 18_{10}$

- Add $-12 + 13$
Chapter 1.5 - Logic Gates

- **NOT, BUF**

 NOT

 ![Not Gate Diagram]

 $$Y = \overline{A}$$

<table>
<thead>
<tr>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

 BUF

 ![Buffer Gate Diagram]

 $$Y = A$$

<table>
<thead>
<tr>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **AND, OR**

 AND

 ![And Gate Diagram]

 $$Y = AB$$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

 OR

 ![Or Gate Diagram]

 $$Y = A + B$$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **XOR, NAND**

 XOR

 ![Xor Gate Diagram]

 $$Y = A \oplus B$$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

 NAND

 ![Nand Gate Diagram]

 $$Y = \overline{A \cdot B}$$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- **NOR, XNOR**

 NOR

 ![Nor Gate Diagram]

 $$Y = \overline{A + B}$$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

 XNOR

 ![Xnor Gate Diagram]

 $$Y = \overline{A \oplus B}$$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example

- Give truth table for logic gate
Chapter 1.6 Beneath Digital Abstraction

- Noise margins

\[
NM_H = V_{OH} - V_{IH}
\]
\[
NM_L = V_{IL} - V_{OL}
\]
Example 1.18

• What is the inverter low and high noise margins

\[V_{DD} = 5, V_{IL} = 1.35, V_{IH} = 3.15, V_{OL} = 0.33, V_{OH} = 3.84 \]
Chapter 1.7 - Transistors

- Voltage controlled switch
 - NMOS – pass 0’s
 - Connect to GND
 - PMOS – pass 1’s
 - Connect to VDD

- CMOS logic gates

![Diagram of CMOS logic gates]

\[g = 0 \quad \text{OFF} \]
\[g = 1 \quad \text{ON} \]
Example

- Give the truth table and function
Chapter 1.7 - Power Consumption

- Two types of power consumption
- Dynamic – power required to charge gate capacitances (turn on/off transistor switches)

\[P_{\text{dynamic}} = \frac{1}{2}CV_{DD}^2f \]

- Static – power consumed when no gates switching

\[P_{\text{static}} = I_{DD}V_{DD} \]
Chapter 2.2 - Boolean Equations

• Terms: variable/complement, literal, product/implicant

• Order of operations: NOT \rightarrow AND \rightarrow OR

• Sum-of-product (SOP) form
 ▫ Determined by minterms of truth table

• Product-of-sums (POS) form
 ▫ Determined by maxterms of truth table
Chapter 2.3 - Boolean Algebra

• Boolean algebra is very much like our normal algebra

• Need to know Boolean Axioms and Theorems
 ▫ Distributivity, covering, De Morgan’s

• Proving equations
 ▫ Perfect induction/proof by exhaustion – show truth tables match
 ▫ Simplification – use theorems/axioms to show both sides of equation are equal
Chapter 2.3.5 - Simplifying Equations

- Practice, practice, practice
Chapter 2.4 - Logic to Gates

- Schematic diagram of digital circuit

Figure 2.23 Schematic of $y = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} \overline{C}$
Chapter 2.5 - Multilevel Combinational Logic

- Convert gate level schematic into Boolean equation

- Bubble pushing – application of De Morgan’s in schematic

\[Y = \overline{ABC} + \overline{D} \]
Chapter 2.6 - Real Circuit Issues

- Don’t cares: X
 - Truth table flexibility

- Contention: X
 - Illegal output value
 - Output could be 1 or 0 in error

- Floating: Z
 - High impedance, high Z
 - Output between 0, 1 by design

\[\begin{array}{cc|c}
E & A & Y \\
0 & 0 & Z \\
0 & 1 & Z \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array} \]