Combinational Building Blocks

- Multiplexers
- Decoders
Multiplexer (Mux)

- Selects between one of N inputs to connect to output
 - $\log_2 N$-bit required to select input – control input S

- Example:
 2:1 Mux (2 inputs to 1 output)
 - $N = 2$
 - $\log_2 2 = 1$ control bit required
Multiplexer Implementations

Logic gates
- Sum-of-products form

<table>
<thead>
<tr>
<th>S</th>
<th>D_1</th>
<th>D_0</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Tristates
- For an N-input mux, use N tristates
 - Turn on exactly one to select the appropriate input
Logic using Multiplexers

- Using the mux as a lookup table
 - Zero outputs tied to GND
 - One output tied to VDD
Logic using Multiplexers

• Reducing the size of the mux

\[Y = AB \]
Decoders

- N inputs, 2^N outputs
- One-hot outputs: only one output HIGH at once

Example:

2:4 Decoder (2 inputs to 4 outputs)
- A_i decimal value selects the corresponding output

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_0</th>
<th>Y_3</th>
<th>Y_2</th>
<th>Y_1</th>
<th>Y_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Decoder Implementation

A_1 \quad A_0

- Y_3
- Y_2
- Y_1
- Y_0
• OR minterms

\[Y = AB + \overline{AB} \]

\[= A \oplus B \]
• Delay between input change and output changing

• How to build fast circuits?
• **Propagation delay:** \(t_{pd} = \) max delay from input to final output

• **Contamination delay:** \(t_{cd} = \) min delay from input to initial output change

Note: Timing diagram shows a signal with a high and low and transition time as an ‘X’. Cross hatch indicates unknown/changing values.
Delay is caused by
- Capacitance and resistance in a circuit
- Speed of light limitation

Reasons why t_{pd} and t_{cd} may be different:
- Different rising and falling delays
- Multiple inputs and outputs, some of which are faster than others
- Circuits slow down when hot and speed up when cold
Critical (Long) & Short Paths

Critical (Long) Path: \(t_{pd} = 2t_{pd_{AND}} + t_{pd_{OR}} \)

Short Path: \(t_{cd} = t_{cd_{AND}} \)
Glitches

• When a single input change causes an output to change multiple times
• What happens when $A = 0$, $C = 1$, B falls?

$Y = AB + BC$
Glitch Example (cont.)

Note: n1 is slower than n2 because of the extra inverter for B to go through.
Fixing the Glitch

Consensus term \(\bar{A}C \)

\[
Y = \bar{A}B + BC + \bar{A}C
\]

\[
\begin{array}{c|c|c|c|c}
A & B & C & Y \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
\]

\[
A = 0
B = 1 \rightarrow 0
C = 1
\]

\[
Y = 1
\]
Why Understand Glitches?

- Glitches shouldn’t cause problems because of **synchronous design** conventions (see Chapter 3)
- It’s important to **recognize** a glitch: in simulations or on oscilloscope
- Can’t get rid of all glitches – simultaneous transitions on multiple inputs can also cause glitches