Chapter 1

CPE100: Digital Logic Design I

Section 1004: Dr. Morris

From Zero to One
Background: Digital Logic Design

• How have digital devices changed the world?
• How have digital devices changed your life?
Background

- Digital Devices have revolutionized our world
 - Internet, cell phones, rapid advances in medicine, etc.
- The semiconductor industry has grown from $21 billion in 1985 to over $300 billion in 2015
The Game Plan

• Purpose of course:
 • Learn the principles of digital design
 • Learn to systematically debug increasingly complex designs
Chapter 1: Topics

- The Art of Managing Complexity
- The Digital Abstraction
- Number Systems
- Addition
- Binary Codes
- Signed Numbers
- Logic Gates
- Logic Levels
- CMOS Transistors
- Power Consumption
The Art of Managing Complexity

- Abstraction
- Discipline
- The Three –y’s
 - Hierarchy
 - Modularity
 - Regularity
Abstraction

- **What is abstraction?**
 - Hiding details when they are not important

- **Electronic computer abstraction**
 - Different levels with different building blocks

<table>
<thead>
<tr>
<th>Application Software</th>
<th>Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Systems</td>
<td>Device drivers</td>
</tr>
<tr>
<td>Architecture</td>
<td>Instructions</td>
</tr>
<tr>
<td>Micro-architecture</td>
<td>Registers</td>
</tr>
<tr>
<td>Logic</td>
<td>Datapaths</td>
</tr>
<tr>
<td>Digital Circuits</td>
<td>Controllers</td>
</tr>
<tr>
<td>Analog Circuits</td>
<td>Adders</td>
</tr>
<tr>
<td>Devices</td>
<td>Memories</td>
</tr>
<tr>
<td>Physics</td>
<td>AND gates</td>
</tr>
<tr>
<td></td>
<td>NOT gates</td>
</tr>
<tr>
<td></td>
<td>Amplifiers</td>
</tr>
<tr>
<td></td>
<td>Filters</td>
</tr>
<tr>
<td></td>
<td>Transistors</td>
</tr>
<tr>
<td></td>
<td>Diodes</td>
</tr>
<tr>
<td></td>
<td>Electrons</td>
</tr>
</tbody>
</table>
Discipline

- Intentionally restrict design choices
- **Example: Digital discipline**
 - Discrete voltages (0 V, 5 V) instead of continuous (0V – 5V)
 - Simpler to design than analog circuits – can build more sophisticated systems
 - Digital systems replacing analog predecessors:
 - i.e., digital cameras, digital television, cell phones, CDs
The Three –y’s

- Hierarchy
 - A system divided into modules and submodules

- Modularity
 - Having well-defined functions and interfaces

- Regularity
 - Encouraging uniformity, so modules can be easily reused
Example: Flintlock Rifle

• Hierarchy

• Three main modules: Lock, stock, and barrel

• Submodules of lock: Hammer, flint, frizzen, etc.
Example Flintlock Rifle

- **Modularity**
 - Function of stock: mount barrel and lock
 - Interface of stock: length and location of mounting pins

- **Regularity**
 - Interchangeable parts
The Art of Managing Complexity

- Abstraction
- Discipline
- The Three –y’s
 - Hierarchy
 - Modularity
 - Regularity
The Digital Abstraction

• Most physical variables are **continuous**
 • Voltage on a wire (1.33 V, 9 V, 12.2 V)
 • Frequency of an oscillation (60 Hz, 33.3 Hz, 44.1 kHz)
 • Position of mass (0.25 m, 3.2 m)
• Digital abstraction considers **discrete subset** of values
 • 0 V, 5 V
 • “0”, “1”
The Analytical Engine

- Designed by Charles Babbage from 1834 – 1871
- Considered to be the first digital computer
- Built from mechanical gears, where each gear represented a discrete value (0-9)
- Babbage died before it was finished
Digital Discipline: Binary Values

- Two discrete values
 - 1 and 0
 - 1 = TRUE = HIGH = ON
 - 0 = FALSE = LOW = OFF

- How to represent 1 and 0
 - Voltage levels, rotating gears, fluid levels, etc.

- Digital circuits use voltage levels to represent 1 and 0
 - Bit = binary digit
 - Represents the status of a digital signal (2 values)
Why Digital Systems?

• Easier to design
• Fast
• Can overcome noise
• Error detection/correction
George Boole, 1815-1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen’s College in Ireland
- Wrote An Investigation of the Laws of Thought (1854)
-Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT
Number Systems

- Decimal
 - Base 10
- Binary
 - Base 2
- Hexadecimal
 - Base 16
Decimal Numbers

- Base 10 (our everyday number system)

\[5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0\]
Binary Numbers

- Base 2 (computer number system)

\[1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 \]

\begin{align*}
\text{1's Column} & : \text{One} \\
\text{2's Column} & : \text{One} \\
\text{4's Column} & : \text{Zero} \\
\text{8's Column} & : \text{One} \\
\end{align*}
Powers of Two

- $2^0 =$
- $2^1 =$
- $2^2 =$
- $2^3 =$
- $2^4 =$
- $2^5 =$
- $2^6 =$
- $2^7 =$

- $2^8 =$
- $2^9 =$
- $2^{10} =$
- $2^{11} =$
- $2^{12} =$
- $2^{13} =$
- $2^{14} =$
- $2^{15} =$
Powers of Two

<table>
<thead>
<tr>
<th>Power</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^0</td>
<td>1</td>
</tr>
<tr>
<td>2^1</td>
<td>2</td>
</tr>
<tr>
<td>2^2</td>
<td>4</td>
</tr>
<tr>
<td>2^3</td>
<td>8</td>
</tr>
<tr>
<td>2^4</td>
<td>16</td>
</tr>
<tr>
<td>2^5</td>
<td>32</td>
</tr>
<tr>
<td>2^6</td>
<td>64</td>
</tr>
<tr>
<td>2^7</td>
<td>128</td>
</tr>
<tr>
<td>2^8</td>
<td>256</td>
</tr>
<tr>
<td>2^9</td>
<td>512</td>
</tr>
<tr>
<td>2^{10}</td>
<td>1024</td>
</tr>
<tr>
<td>2^{11}</td>
<td>2048</td>
</tr>
<tr>
<td>2^{12}</td>
<td>4096</td>
</tr>
<tr>
<td>2^{13}</td>
<td>8192</td>
</tr>
<tr>
<td>2^{14}</td>
<td>16384</td>
</tr>
<tr>
<td>2^{15}</td>
<td>32768</td>
</tr>
</tbody>
</table>

Handy to memorize up to 2^{10}
Bits, Bytes, Nibbles ...

- Bits

- Bytes = 8 bits

- Nibble = 4 bits

- Words = 32 bits
 - Hex digit to represent nibble
Decimal to Binary Conversion

• Two Methods:

• Method 1: Find largest power of 2 that fits, subtract and repeat

• Method 2: Repeatedly divide by 2, remainder goes in next most significant bit
D2B: Method 1

- Find largest power of 2 that fits, subtract, repeat

53_{10}
D2B: Method 1

• Find largest power of 2 that fits, subtract, repeat

\[
\begin{align*}
53_{10} & \quad 32 \times 1 \\
53 - 32 &= 21 \\
21 - 16 &= 5 \\
5 - 4 &= 1 \\
\end{align*}
\]

\[
= 110101_2
\]
D2B: Method 2

• Repeatedly divide by 2, remainder goes in next most significant bit

\[53_{10} = \]
D2B: Method 2

• Repeatedly divide by 2, remainder goes in next most significant bit

\[53_{10} = 53/2 = 26 \text{ R1} \]
\[26/2 = 13 \text{ R0} \]
\[13/2 = 6 \text{ R1} \]
\[6/2 = 3 \text{ R0} \]
\[3/2 = 1 \text{ R1} \]
\[1/2 = 0 \text{ R1} \]

= \text{110101}_2 \]
Number Conversion

• Binary to decimal conversion
 • Convert 10011_2 to decimal
 \[16 \times 1 + 8 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 19_{10}\]

• Decimal to binary conversion
 • Convert 47_{10} to binary
 \[32 \times 1 + 16 \times 0 + 8 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 101111_2\]
D2B Example

• Convert 75_{10} to binary
D2B Example

• Convert 75_{10} to binary

$$75_{10} = 64 + 8 + 2 + 1 = 1001011_2$$

• Or

- $75/2 = 37 \text{ R1}$
- $37/2 = 18 \text{ R1}$
- $18/2 = 9 \text{ R0}$
- $9/2 = 4 \text{ R1}$
- $4/2 = 2 \text{ R0}$
- $2/2 = 1 \text{ R0}$
- $1/2 = 0 \text{ R1}$
Binary Values and Range

- N-digit decimal number
 - How many values?
 - Range?

- Example:
 3-digit decimal number
 - Possible values
 - Range
Binary Values and Range

- N-digit decimal number
 - How many values?
 - 10^N
 - Range?
 - $[0, 10^N - 1]$

- Example:
 3-digit decimal number
 - Possible values
 - $10^3 = 1000$
 - Range
 - $[0, 999]$
Binary Values and Range

- N-bit binary number
 - How many values?
 - Range?

- Example:
 3-bit binary number
 - Possible values
 - Range
Binary Values and Range

• N-bit binary number
 • How many values?
 • 2^N
 • Range?
 • $[0, 2^N - 1]$

• Example:
 3-bit binary number
 • Possible values
 • $2^3 = 8$
 • Range
 • $[0, 7] = [000_2, 111_2]$
Binary Values and Range

- **N-digit decimal number**
 - **How many values?**
 - \(10^N\)
 - **Range?**
 - \([0, 10^N - 1]\)
- **Example:**
 3-digit decimal number
 - **Possible values**
 - \(10^3 = 1000\)
 - **Range**
 - \([0, 999]\)

- **N-bit binary number**
 - **How many values?**
 - \(2^N\)
 - **Range?**
 - \([0, 2^N - 1]\)
- **Example:**
 3-bit binary number
 - **Possible values**
 - \(2^3 = 8\)
 - **Range**
 - \([0, 7] = [000_2, 111_2]\)
Hexadecimal Numbers

- Base 16 number system
- Shorthand for binary
 - Four binary digits (4-bit binary number) is a single hex digit
Hexadecimal Numbers

<table>
<thead>
<tr>
<th>Hex Digit</th>
<th>Decimal Equivalent</th>
<th>Binary Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Hexadecimal Numbers

<table>
<thead>
<tr>
<th>Hex Digit</th>
<th>Decimal Equivalent</th>
<th>Binary Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Hexadecimal to Binary Conversion

• Hexadecimal to binary conversion:
 • Convert $4AF_{16}$ (also written $0x4AF$) to binary

• Hexadecimal to decimal conversion:
 • Convert $0x4AF$ to decimal
Hexadecimal to Binary Conversion

• Hexadecimal to binary conversion:
 • Convert 4AF_{16} (also written 0x4AF) to binary
 • $0\text{x4AF} = 0100\ 1010\ 1111_2$

• Hexadecimal to decimal conversion:
 • Convert 0x4AF to decimal
 • $4 \times 16^2 + 10 \times 16^1 + 15 \times 16^0 = 1199_{10}$
Number Systems

• Popular
 • Decimal Base 10
 • Binary Base 2
 • Hexadecimal Base 16

• Others
 • Octal Base 8
 • Any other base
Octal Numbers

- Same as hex with one less binary digit

<table>
<thead>
<tr>
<th>Octal Digit</th>
<th>Decimal Equivalent</th>
<th>Binary Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>111</td>
</tr>
</tbody>
</table>
Number Systems

• In general, an N-digit number \(\{a_{N-1}a_{N-2} \ldots a_1a_0\} \) of base \(R \) in decimal equals

 \[a_{N-1}R^{N-1} + a_{N-2}R^{N-2} + \cdots + a_1R^1 + a_0R^0 \]

• Example: 4-digit \(\{5173\} \) of base 8 (octal)
Number Systems

• In general, an N-digit number \(\{a_{N-1} a_{N-2} \ldots a_1 a_0\} \) of base \(R \) in decimal equals

\[
a_{N-1}R^{N-1} + a_{N-2}R^{N-2} + \cdots + a_1R^1 + a_0R^0
\]

• Example: 4-digit \(\{5173\} \) of base 8 (octal)

\[
5 \times 8^3 + 1 \times 8^2 + 7 \times 8^1 + 3 \times 8^0 = 2683_{10}
\]
Decimal to Octal Conversion

- Remember two methods for D2B conversion
 - 1: remove largest multiple; 2: repeated divide
- Convert 29_{10} to octal
Decimal to Octal Conversion

- Remember two methods for D2B conversion
 - 1: remove largest multiple; 2: repeated divide
- Convert 29_{10} to octal
- Method 2

\[
\begin{align*}
29 / 8 &= 3 \text{ R5 lsb} \\
3 / 8 &= 0 \text{ R3 msb}
\end{align*}
\]

\[29_{10} = 35_8\]
Decimal to Octal Conversion

- Remember two methods for D2B conversion
 - 1: remove largest multiple; 2: repeated divide
- Convert \(29_{10}\) to octal
- Method 1

\[
29 = 8 \times 3 = 24 \\
29 - 24 = 5
\]

\[
29_{10} = 24 + 5 = 3 \times 8^1 + 5 \times 8^0 = 35_8
\]

- Or (better scalability)

\[
29_{10} = 16 + 8 + 4 + 1 = 11101_2 = 35_8
\]
Octal to Decimal Conversion

• Convert 163_8 to decimal
Octal to Decimal Conversion

• Convert 163_8 to decimal

 • $163_8 = 1 \times 8^2 + 6 \times 8^1 + 3$
 • $163_8 = 64 + 48 + 3$
 • $163_8 = 115_{10}$
Recap: Binary and Hex Numbers

• Example 1: Convert 83_{10} to hex

• Example 2: Convert 01101011_2 to hex and decimal

• Example 3: Convert $0xCA3$ to binary and decimal
Recap: Binary and Hex Numbers

• Example 1: Convert 83_{10} to hex
 • $83_{10} = 64 + 16 + 2 + 1 = 1010011_2$
 • $1010011_2 = 101 0011_2 = 53_{16}$

• Example 2: Convert 01101011_2 to hex and decimal
 • $01101011_2 = 0110 1011_2 = 6B_{16}$
 • $0x6B = 6 \times 16^1 + 11 \times 16^0 = 96 + 11 = 107$

• Example 3: Convert $0xCA3$ to binary and decimal
 • $0xCA3 = 1100 1010 0011_2$
 • $0xCA3 = 12 \times 16^2 + 10 \times 16^1 + 3 \times 16^0 = 3235_{10}$
Large Powers of Two

- $2^{10} = 1 \text{ kilo} \approx 1000$ (1024)
- $2^{20} = 1 \text{ mega} \approx 1 \text{ million}$ (1,048,576)
- $2^{30} = 1 \text{ giga} \approx 1 \text{ billion}$ (1,073,741,824)
- $2^{40} = 1 \text{ tera} \approx 1 \text{ trillion}$ (1,099,511,627,776)
Large Powers of Two: Abbreviations

• $2^{10} = 1 \text{ kilo} \approx 1000 \ (1024)$

 for example: $1 \text{ kB} = 1024 \text{ Bytes}$
 $1 \text{ kb} = 1024 \text{ bits}$

• $2^{20} = 1 \text{ mega} \approx 1 \text{ million} \ (1,048,576)$

 for example: $1 \text{ MiB}, 1 \text{ Mib} \ (1 \text{ megabit})$

• $2^{30} = 1 \text{ giga} \approx 1 \text{ billion} \ (1,073,741,824)$

 for example: $1 \text{ GiB}, 1 \text{ Gib}$
Estimating Powers of Two

• What is the value of 2^{24}?

• How many values can a 32-bit variable represent?
Estimating Powers of Two

• What is the value of 2^{24}?
 • $2^4 \times 2^{20} \approx 16$ million

• How many values can a 32-bit variable represent?
 • $2^2 \times 2^{30} \approx 4$ billion
Binary Codes

Another way of representing decimal numbers

Example binary codes:

• Weighted codes
 • Binary Coded Decimal (BCD) (8-4-2-1 code)
 • 6-3-1-1 code
 • 8-4-2-1 code (simple binary)

• Gray codes

• Excess-3 code

• 2-out-of-5 code
Binary Codes

<table>
<thead>
<tr>
<th>Decimal #</th>
<th>8-4-2-1 (BCD)</th>
<th>6-3-1-1</th>
<th>Excess-3</th>
<th>2-out-of-5</th>
<th>Gray</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0000</td>
<td>0011</td>
<td>00011</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>0001</td>
<td>0100</td>
<td>00101</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>0011</td>
<td>0101</td>
<td>00110</td>
<td>0011</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>0100</td>
<td>0110</td>
<td>01001</td>
<td>0010</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>0101</td>
<td>0111</td>
<td>01010</td>
<td>0110</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>0111</td>
<td>1000</td>
<td>01100</td>
<td>1110</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>1000</td>
<td>1001</td>
<td>10001</td>
<td>1010</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>1001</td>
<td>1010</td>
<td>10010</td>
<td>1011</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>1011</td>
<td>1011</td>
<td>10100</td>
<td>1001</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>1100</td>
<td>1100</td>
<td>11000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Each code combination represents a single decimal digit.
Weighted Codes

- Weighted codes: each bit position has a given weight
 - Binary Coded Decimal (BCD) (8-4-2-1 code)
 - Example: $726_{10} = 0111\ 0010\ 0110_{BCD}$
 - 6-3-1-1 code
 - Example: 1001 (6-3-1-1 code) = $1\times6 + 0\times3 + 0\times1 + 1\times1$
 - Example: $726_{10} = 1001\ 0011\ 1000_{6311}$
- BCD numbers are used to represent fractional numbers exactly (vs. floating point numbers – which can’t - see Chapter 5)
Weighted Codes

<table>
<thead>
<tr>
<th>Decimal #</th>
<th>8-4-2-1 (BCD)</th>
<th>6-3-1-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>0011</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>0100</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>0101</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>0111</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>1000</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>1001</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>1011</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>1100</td>
</tr>
</tbody>
</table>

- **BCD Example:**
 \[726_{10} = 0111\ 0010\ 0110_{BCD}\]

- **6-3-1-1 code Example:**
 \[726_{10} = 1001\ 0011\ 1000_{6311}\]
Excess-3 Code

- Add 3 to number, then represent in binary
 - Example: $5_{10} = 5+3 = 8 = 1000_2$
- Also called a biased number
- Excess-3 codes (also called XS-3) were used in the 1970’s to ease arithmetic

<table>
<thead>
<tr>
<th>Decimal #</th>
<th>Excess-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0011</td>
</tr>
<tr>
<td>1</td>
<td>0100</td>
</tr>
<tr>
<td>2</td>
<td>0101</td>
</tr>
<tr>
<td>3</td>
<td>0110</td>
</tr>
<tr>
<td>4</td>
<td>0111</td>
</tr>
<tr>
<td>5</td>
<td>1000</td>
</tr>
<tr>
<td>6</td>
<td>1001</td>
</tr>
<tr>
<td>7</td>
<td>1010</td>
</tr>
<tr>
<td>8</td>
<td>1011</td>
</tr>
<tr>
<td>9</td>
<td>1100</td>
</tr>
</tbody>
</table>

- Excess-3 Example:
 $726_{10} = 1010 0101 1001_{\text{xs3}}$
2-out-of-5 Code

• 2 out of the 5 bits are 1

• Used for error detection:
 • If more or less than 2 of 5 bits are 1, error

<table>
<thead>
<tr>
<th>Decimal #</th>
<th>2-out-of-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00011</td>
</tr>
<tr>
<td>1</td>
<td>00101</td>
</tr>
<tr>
<td>2</td>
<td>00110</td>
</tr>
<tr>
<td>3</td>
<td>01001</td>
</tr>
<tr>
<td>4</td>
<td>01010</td>
</tr>
<tr>
<td>5</td>
<td>01100</td>
</tr>
<tr>
<td>6</td>
<td>10001</td>
</tr>
<tr>
<td>7</td>
<td>10010</td>
</tr>
<tr>
<td>8</td>
<td>10100</td>
</tr>
<tr>
<td>9</td>
<td>11000</td>
</tr>
</tbody>
</table>
Gray Codes

- Next number differs in only one bit position
 - **Example:** 000, 001, 011, 010, 110, 111, 101, 100

- **Example use:** Analog-to-Digital (A/D) converters. Changing 2 bits at a time (i.e., 011 → 100) could cause large inaccuracies.

<table>
<thead>
<tr>
<th>Decimal #</th>
<th>Gray</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0011</td>
</tr>
<tr>
<td>3</td>
<td>0010</td>
</tr>
<tr>
<td>4</td>
<td>0110</td>
</tr>
<tr>
<td>5</td>
<td>1110</td>
</tr>
<tr>
<td>6</td>
<td>1010</td>
</tr>
<tr>
<td>7</td>
<td>1011</td>
</tr>
<tr>
<td>8</td>
<td>1001</td>
</tr>
<tr>
<td>9</td>
<td>1000</td>
</tr>
</tbody>
</table>
Addition

• Decimal

\[
\begin{array}{c}
3734 \\
+ 5168 \\
\hline
10161
\end{array}
\]

• Binary

\[
\begin{array}{c}
1011 \\
+ 0011 \\
\hline
10111
\end{array}
\]
Addition

• Decimal

\[
\begin{align*}
3734 & \quad + \quad 5168 \\
& \quad + \quad 8902 \\
& \quad = \quad 11 \text{ carries} \\
\end{align*}
\]

\[
\begin{align*}
3734 & \quad + \quad 5168 \\
& \quad + \quad 8902 \\
& \quad = \quad 8902
\end{align*}
\]

• Binary

\[
\begin{align*}
1011 & \quad + \quad 0011 \\
& \quad + \quad 0011 \\
& \quad = \quad 0011
\end{align*}
\]
Addition

- Decimal

\[
\begin{array}{c}
3734 \\
+ 5168 \\
\hline
8902
\end{array}
\]

11 \leftarrow \text{carries}

- Binary

\[
\begin{array}{c}
1011 \\
+ 0011 \\
\hline
1110
\end{array}
\]

11 \leftarrow \text{carries}
Binary Addition Examples

- Add the following 4-bit binary numbers

```
1001
+ 0101
---
1010
```

- Add the following 4-bit binary numbers

```
1011
+ 0110
---
1001
```
Binary Addition Examples

• Add the following 4-bit binary numbers

\[
\begin{align*}
1001 &+ 0101 \\
+ 1110 &\hline
1110
\end{align*}
\]

• Add the following 4-bit binary numbers

\[
\begin{align*}
1011 &+ 0110 \\
+ 0110 &\hline
1010
\end{align*}
\]
Binary Addition Examples

- Add the following 4-bit binary numbers:
 \[\begin{array}{c}
 1001 \\
 + 0101 \\
 \hline
 1110
 \end{array}\]

- Add the following 4-bit binary numbers:
 \[\begin{array}{c}
 111 \\
 1011 \\
 + 0110 \\
 \hline
 10001
 \end{array}\]

Overflow!
Overflow

- Digital systems operate on a fixed number of bits
- Overflow: when result is too big to fit in the available number of bits
- See previous example of 11 + 6
Signed Binary Numbers

- Sign/Magnitude Numbers
- Two’s Complement Numbers
Sign/Magnitude

• 1 sign bit, \(N-1\) magnitude bits
• Sign bit is the most significant (left-most) bit
 – Positive number: sign bit = 0
 – Negative number: sign bit = 1

\[A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i \]

• Example, 4-bit sign/magnitude representations of \(\pm 6\):
 • +6 =
 • -6 =

• Range of an \(N\)-bit sign/magnitude number:
Sign/Magnitude

- 1 sign bit, \(N-1 \) magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0
 - Negative number: sign bit = 1

- Example, 4-bit sign/magnitude representations of ±6:
 - +6 = 0110
 - -6 = 1110

- Range of an \(N \)-bit sign/magnitude number:
 - \([- (2^{N-1} - 1), 2^{N-1} - 1]\)
Sign/Magnitude Numbers

- Problems:
 - Addition doesn’t work, for example \(-6 + 6:\n \begin{align*}
 1110 \\
 + 0110 \\
 \hline
 0000
 \end{align*}

- Two representations of 0 (\(\pm 0\)):
 - \((+0) = \)
 - \((-0) = \)
Sign/Magnitude Numbers

• Problems:

 • Addition doesn’t work, for example -6 + 6:

 \[
 \begin{array}{c}
 1110 \\
 + 0110 \\
 \hline
 10100 \quad \text{(wrong!)}
 \end{array}
 \]

 • Two representations of 0 (± 0):

 • (±0) = 0000
 • (−0) = 1000
Two’s Complement Numbers

- Don’t have same problems as sign/magnitude numbers:
 - Addition works
 - Single representation for 0

- Range of representable numbers not symmetric
 - One extra negative number
Two’s Complement Numbers

• msb has value of -2^{N-1}

$A = a_{n-1} \left(-2^{n-1}\right) + \sum_{i=0}^{n-2} a_i 2^i$

• The most significant bit still indicates the sign (1 = negative, 0 = positive)

• Range of an N-bit two’s comp number?

• Most positive 4-bit number?

• Most negative 4-bit number?
Two’s Complement Numbers

- msb has value of -2^{N-1}
 \[A = a_{n-1}(-2^{n-1}) + \sum_{i=0}^{n-2} a_i 2^i \]

- The most significant bit still indicates the sign (1 = negative, 0 = positive)

- Range of an N-bit two’s comp number?
 - $[-(2^{N-1}), 2^{N-1} - 1]$

- Most positive 4-bit number? 0111
- Most negative 4-bit number? 1000
“Taking the Two’s Complement”

• **Flips the sign** of a two’s complement number

• **Method:**
 1. Invert the bits
 2. Add 1

• **Example:** Flip the sign of $3_{10} = 0011_2$
“Taking the Two’s Complement”

- **Flips the sign** of a two’s complement number
- **Method:**
 1. Invert the bits
 2. Add 1
- **Example:** Flip the sign of $3_{10} = 0011_2$
 1. 1100
 2. $+ 1$
 3. $1101 = -3_{10}$
Two’s Complement Examples

• Take the two’s complement of $6_{10} = 0110_2$

• What is the decimal value of the two’s complement number 1001_2?
Two’s Complement Examples

• Take the two’s complement of $6_{10} = 0110_2$
 1. 1001
 2. $+ 1$
 \[1010_2 = -6_{10}\]

• What is the decimal value of the two’s complement number 1001_2?
 1. 0110
 2. $+ 1$
 \[0111_2 = 7_{10}, \text{ so } 1001_2 = -7_{10}\]
Two’s Complement Addition

- Add 6 + (-6) using two’s complement numbers

\[
\begin{align*}
0110 \\
+ 1010 \\
\hline
1110 \\
\end{align*}
\]

- Add -2 + 3 using two’s complement numbers

\[
\begin{align*}
1110 \\
+ 0011 \\
\hline
100 \text{(overflow)}
\end{align*}
\]
Two’s Complement Addition

• Add 6 + (-6) using two’s complement numbers

\[
\begin{array}{c}
111 \\
0110 \\
+ \quad 1010 \\
\hline
10000 \\
\end{array}
\]

• Add -2 + 3 using two’s complement numbers

\[
\begin{array}{c}
1110 \\
+ \quad 0011 \\
\hline
10001 \\
\end{array}
\]
Two’s Complement Addition

- Add $6 + (-6)$ using two’s complement numbers
 \[
 \begin{array}{c}
 111 \\
 0110 \\
 + 1010 \\
 \hline
 10000
 \end{array}
 \]

- Add $-2 + 3$ using two’s complement numbers
 \[
 \begin{array}{c}
 111 \\
 1110 \\
 + 0011 \\
 \hline
 10001
 \end{array}
 \]
Increasing Bit Width

- Extend number from N to M bits (M > N):
 - Sign-extension
 - Zero-extension
Sign-Extension

- Sign bit copied to msb’s
- Number value is same

- Example 1
 - 4-bit representation of 3 = 0011
 - 8-bit sign-extended value:

- Example 2
 - 4-bit representation of -7 = 1001
 - 8-bit sign-extended value:
Sign-Extension

• Sign bit copied to msb’s
• Number value is same

• Example 1
 • 4-bit representation of 3 = 0011
 • 8-bit sign-extended value: 00000011

• Example 2
 • 4-bit representation of -7 = 1001
 • 8-bit sign-extended value: 11111001
Zero-Extension

• Zeros copied to msb’s
• Value changes for negative numbers

• Example 1
 • 4-bit value = 0011_2
 • 8-bit zero-extended value:

• Example 2
 • 4-bit value = 1001
 • 8-bit zero-extended value:
Zero-Extension

• Zeros copied to msb’s
• Value changes for negative numbers

• Example 1
 • 4-bit value = 0011₂
 • 8-bit zero-extended value: 00000011

• Example 2
 • 4-bit value = 1001
 • 8-bit zero-extended value: 00001001
Zero-Extension

- Zeros copied to msb’s
- Value changes for negative numbers

- Example 1
 - 4-bit value = \(0011_2\) = \(3_{10}\)
 - 8-bit zero-extended value: \(00000011\) = \(3_{10}\)

- Example 2
 - 4-bit value = \(1001\) = \(-7_{10}\)
 - 8-bit zero-extended value: \(00001001\) = \(9_{10}\)
Number System Comparison

<table>
<thead>
<tr>
<th>Number System</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned</td>
<td>[0, (2^N-1)]</td>
</tr>
<tr>
<td>Sign/Magnitude</td>
<td>([-2^{N-1}-1, 2^{N-1}-1])</td>
</tr>
<tr>
<td>Two’s Complement</td>
<td>([-2^{N-1}, 2^{N-1}-1])</td>
</tr>
</tbody>
</table>

For example, 4-bit representation:

Unsigned: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Two’s Complement: 1000 1001 1010 1011 1100 1101 1110 1111

Sign/Magnitude: 1111 1110 1101 1100 1011 1010 1001 1000 0000 0001 0010 0011 0100 0101 0110 0111
Logic Gates

- Perform logic functions:
 - inversion (NOT), AND, OR, NAND, NOR, etc.
- Single-input:
 - NOT gate, buffer
- Two-input:
 - AND, OR, XOR, NAND, NOR, XNOR
- Multiple-input
Single-Input Logic Gates

NOT

\[
Y = \overline{A}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

BUF

\[
Y = A
\]

<table>
<thead>
<tr>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Single-Input Logic Gates

- Bubble on wire indicates inversion

\[
\text{NOT} \\
A \quad Y \\
\hline
0 \quad 1 \\
1 \quad 0
\]

\[
\text{BUF} \\
A \quad Y \\
\hline
0 \quad 0 \\
1 \quad 1
\]

- Note: bar over variable indicates complement (invert value)
Two-Input Logic Gates

AND

\[Y = AB \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

OR

\[Y = A + B \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Two-Input Logic Gates

AND Gate

- **Symbol:** ![AND Gate](symbols/and.png)
- **Function:** $Y = AB$
- **Truth Table:**

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

OR Gate

- **Symbol:** ![OR Gate](symbols/or.png)
- **Function:** $Y = A + B$
- **Truth Table:**

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
More Two-Input Logic Gates

<table>
<thead>
<tr>
<th></th>
<th>XOR</th>
<th>NAND</th>
<th>NOR</th>
<th>XNOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$Y = A \oplus B$</td>
<td>$Y = \overline{AB}$</td>
<td>$Y = \overline{A + B}$</td>
<td>$Y = \overline{A \oplus B}$</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>Y</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
More Two-Input Logic Gates

XOR

$$Y = A \oplus B$$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NAND

$$Y = \overline{AB}$$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NOR

$$Y = \overline{A + B}$$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

XNOR

$$Y = \overline{A \oplus B}$$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Multiple-Input Logic Gates

NOR3

\[Y = \overline{A + B + C} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

AND3

\[Y = ABC \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Multiple-Input Logic Gates

- Multi-input XOR = Odd parity (one for odd input=1)

NOR3

\[Y = \overline{A + B + C} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

AND3

\[Y = ABC \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Logic Levels

- Discrete voltages represent 1 and 0
- For example:
 - 0 = ground (GND) or 0 volts
 - 1 = V_{DD} or 5 volts
- What about 4.99 volts? Is that a 0 or a 1?
- What about 3.2 volts?
Logic Levels

• Must have range of voltages for 1 and 0

• Different ranges for inputs and outputs to allow for noise
What is Noise?

• Anything that degrades the signal
 • E.g., resistance, power supply noise, coupling to neighboring wires, etc.

• Example: a gate (driver) outputs 5 V but, because of resistance in a long wire, receiver gets 4.5 V
The Static Discipline

- With logically valid inputs, every circuit element must produce logically valid outputs.

- Use limited ranges of voltages to represent discrete values.
Real Logic Levels

- Want driver to output “clean” high/low and receiver to handle noisy high/low
Real Logic Levels

• Want driver to output “clean” high/low and receiver to handle noisy high/low
Real Logic Levels

![Diagram showing driver and receiver with input and output characteristics]

- Logic High Output Range: V_{OH}
- Logic Low Output Range: V_{OL}
- Logic High Input Range: V_{IH}
- Logic Low Input Range: V_{IL}

Forbidden Zone:

- $NM_H = V_{OH} - V_{IH}$
- $NM_L = V_{IL} - V_{OL}$
V\textsubscript{DD} Scaling

- In 1970’s and 1980’s, V\textsubscript{DD} = 5 V
- V\textsubscript{DD} has dropped
 - 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, ...

 - Avoid frying tiny transistors
 - Save power

- Be careful connecting chips with different supply voltages
 - Easy to fry if not careful
Logic Family Examples

<table>
<thead>
<tr>
<th>Logic Family</th>
<th>V_{DD}</th>
<th>V_{IL}</th>
<th>V_{IH}</th>
<th>V_{OL}</th>
<th>V_{OH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTL</td>
<td>5 (4.75 - 5.25)</td>
<td>0.8</td>
<td>2.0</td>
<td>0.4</td>
<td>2.4</td>
</tr>
<tr>
<td>CMOS</td>
<td>5 (4.5 - 6)</td>
<td>1.35</td>
<td>3.15</td>
<td>0.33</td>
<td>3.84</td>
</tr>
<tr>
<td>LVTTL</td>
<td>3.3 (3 - 3.6)</td>
<td>0.8</td>
<td>2.0</td>
<td>0.4</td>
<td>2.4</td>
</tr>
<tr>
<td>LVCMOS</td>
<td>3.3 (3 - 3.6)</td>
<td>0.9</td>
<td>1.8</td>
<td>0.36</td>
<td>2.7</td>
</tr>
</tbody>
</table>
Transistors

• Logic gates built from transistors
• Simple model: 3-ported voltage-controlled switch
 • 2 ports connected depending on voltage of 3rd
 • d and s are connected (ON) when g is 1

\[
\begin{align*}
g = 0 & : \quad \text{OFF} \\
g = 1 & : \quad \text{ON}
\end{align*}
\]
Robert Noyce, 1927-1990

- Nicknamed “Mayor of Silicon Valley”
- Cofounded Fairchild Semiconductor in 1957
- Cofounded Intel in 1968
- Co-invented the integrated circuit
Silicon

- Transistors built from silicon, a semiconductor
- Pure silicon is a poor conductor (no free charges)
- Doped silicon is a good conductor (free charges)
 - n-type (free negative charges, electrons)
 - p-type (free positive charges, holes)

Silicon Lattice

\[
\begin{array}{cccc}
\text{Si} & \text{Si} & \text{Si} & \text{Si} \\
\text{As} & \text{Si} & \text{Si} & \text{Si} \\
\text{B} & \text{Si} & \text{Si} & \text{Si} \\
\end{array}
\]

Free electron

\[
\begin{array}{cccc}
\text{Si} & \text{Si} & \text{Si} & \text{Si} \\
\text{Si} & \text{As}^+ & \text{Si} & \text{Si} \\
\text{Si} & \text{Si} & \text{Si} & \text{Si} \\
\end{array}
\]

Free hole

\[
\begin{array}{cccc}
\text{Si} & \text{Si} & \text{Si} & \text{Si} \\
\text{Si} & \text{Si} & \text{Si} & \text{Si} \\
\text{Si} & \text{Si} & \text{Si} & \text{Si} \\
\end{array}
\]

n-Type

p-Type
MOS Transistors

- Metal oxide silicon (MOS) transistors:
 - Polysilicon (used to be metal) gate
 - Oxide (silicon dioxide) insulator
 - Doped silicon

![MOS Transistor Diagram]

- nMOS

![Polysilicon and SiO2]

- source
- gate
- drain
- Polysilicon
- SiO2
- substrate
- p

nMOS Transistors

- Gate = 0
- OFF (no connection between source and drain)

- Gate = 1
- ON (channel between source and drain)

Diode connection from p to n doped area → current cannot travel from n → p
pMOS Transistors

- pMOS transistor is opposite of nMOS
 - ON when Gate = 0
 - OFF when Gate = 1

Note bubble on gate to indicate on when low
Transistor Function

- Voltage controlled switch

<table>
<thead>
<tr>
<th>g = 0</th>
<th>g = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>nMOS</td>
<td>ON</td>
</tr>
<tr>
<td>pMOS</td>
<td>OFF</td>
</tr>
</tbody>
</table>

nMOS: OFF on the left, ON on the right.
pMOS: OFF on the left, ON on the right.
Transistor Composition

- nMOS: pass good 0’s
 - Connect source to GND
 - “Pull down” transistor

- pMOS: pass good 1’s
 - Connect source to VDD
 - “Pull up” transistor

- Build logic gates from composition
 - CMOS = complementary MOS

Diagram:

```
  inputs
     /  
    /   
 pMOS pull-up network
     
     /  
    /   
 nMOS pull-down network
     
     
     output
```
CMOS Gate Structure

- Pull-up pMOS network connects to V_{DD}
- Pull-down nMOS network connects to GND
- Use series and parallel connections to implement gate logic
CMOS Gates: NOT Gate

\[Y = \overline{A} \]

<table>
<thead>
<tr>
<th>A</th>
<th>P1</th>
<th>N1</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CMOS Gates: NOT Gate

NOT

\[Y = \overline{A} \]

<table>
<thead>
<tr>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>P1</th>
<th>N1</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>OFF</td>
<td>ON</td>
<td>0</td>
</tr>
</tbody>
</table>
CMOS Gates: NAND Gate

NAND

$$Y = \overline{AB}$$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>P1</th>
<th>P2</th>
<th>N1</th>
<th>N2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CMOS Gates: NAND Gate

NAND

\[Y = \overline{AB} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>P1</th>
<th>P2</th>
<th>N1</th>
<th>N2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>0</td>
</tr>
</tbody>
</table>
CMOS Gates: NOR Gate

• How can you build three input \((A, B, C)\) NOR gate?
CMOS Gates: NOR Gate

- How can you build three input \((A, B, C)\) NOR gate?

Only high output when all three pMOS in series are “on” and create a path from output to \(V_{DD}\)
CMOS Gates: AND Gate

- How can you build a 2 input AND gate?
CMOS Gates: AND Gate

- How can you build 2 input AND gate?

Diagram:

A
B

Y
CMOS Gates: AND Gate

- How can you build a 2 input AND gate?

Note: AND requires 2 more gates than NAND. Inverted logic is more efficient implementation.
Transmission Gates

- nMOS pass 1’s poorly, pMOS pass 0’s poorly
- Transmission gate is for passing signal
 - Pass both 0 and 1 well
- When EN = 1, the switch is ON:
 - \(\overline{EN} = 0 \) and A is connected to B
- When EN = 0, the switch is OFF:
 - A is not connected to B
Psuedo-nMOS

- Replace pull-up network with weak pMOS transistor that is always on
 - pMOS gate tied to ground
- pMOS transistor: pulls output HIGH only when nMOS network not pulling it LOW
Psuedo-nMOS Example: NOR4

- How many transistors needed?
Psuedo-nMOS Example: NOR4

- How many transistors needed?
 - Only 5 since a single pMOS is used
Gordon Moore, 1929-

- Cofounded Intel in 1968 with Robert Noyce.
- Moore’s Law: number of transistors on a computer chip doubles every year (observed in 1965)
 - Since 1975, transistor counts have doubled every two years.
Moore’s Law

- Transistor count doubles every 2 years

Microprocessor Transistor Counts 1971-2011 & Moore’s Law
Moore's Law Trends

- "If the automobile had followed the same development cycle as the computer, a Rolls-Royce would today cost $100, get one million miles to the gallon, and explode once a year . . ."
 —Robert Cringley
Power Consumption

- Power = Energy consumed per unit time

- Two types of power
 - Dynamic power consumption
 - Static power consumption
Dynamic Power Consumption

• Power to charge transistor gate capacitances
 • Energy required to charge a capacitance, C, to V_{DD} is CV_{DD}^2
 • Circuit running at frequency f: transistors switch (from 1 to 0 or vice versa) at that frequency
 • Capacitor is charged $f/2$ times per second (discharging from 1 to 0 is free)

• Dynamic power consumption

$$P_{dynamic} = \frac{1}{2} CV_{DD}^2 f$$
Static Power Consumption

- Power consumed when no gates are switching
- Caused by the quiescent supply current, I_{DD} (also called the leakage current)

$$P_{static} = I_{DD}V_{DD}$$
Power Consumption Example

• Estimate the power consumption of a wireless handheld computer
 • $V_{DD} = 1.2 \text{ V}$
 • $C = 20 \text{ nF}$
 • $f = 1 \text{ GHz}$
 • $I_{DD} = 20 \text{ mA}$

• Total power is sum of dynamic and static
Power Consumption Example

• Estimate the power consumption of a wireless handheld computer
 • $V_{DD} = 1.2$ V
 • $C = 20$ nF
 • $f = 1$ GHz
 • $I_{DD} = 20$ mA

• Total power is sum of dynamic and static

$$P = \frac{1}{2}CV_{DD}^2f + I_{DD}V_{DD}$$
$$= \frac{1}{2}(20 \text{ n})(1.2)^2(1 \text{ G})$$
$$+ (20 \text{ m})(1.2)$$
$$= (14.4 + 0.024)\text{W}$$
$$= 14.4 \text{ W}$$