CPE100: Digital Logic Design I

Section 1004: Dr. Morris
From Zero to One
Background: Digital Logic Design

• How have digital devices changed the world?
• How have digital devices changed your life?
Background

- Digital Devices have revolutionized our world
 - Internet, cell phones, rapid advances in medicine, etc.
- The semiconductor industry has grown from $21 billion in 1985 to over $300 billion in 2015
The Game Plan

• Purpose of course:
 • Learn the principles of digital design
 • Learn to systematically debug increasingly complex designs
Chapter 1: Topics

• The Art of Managing Complexity
• The Digital Abstraction
• Number Systems
• Addition
• Binary Codes
• Signed Numbers
• Logic Gates
• Logic Levels
• CMOS Transistors
• Power Consumption
The Art of Managing Complexity

- Abstraction
- Discipline
- The Three –y’s
 - Hierarchy
 - Modularity
 - Regularity
Abstraction

- What is abstraction?
 - Hiding details when they are not important

- Electronic computer abstraction
 - Different levels with different building blocks

<table>
<thead>
<tr>
<th>Application Software</th>
<th>"hello world!"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Systems</td>
<td></td>
</tr>
<tr>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>Micro-architecture</td>
<td></td>
</tr>
<tr>
<td>Logic</td>
<td></td>
</tr>
<tr>
<td>Digital Circuits</td>
<td></td>
</tr>
<tr>
<td>Analog Circuits</td>
<td></td>
</tr>
<tr>
<td>Devices</td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td></td>
</tr>
</tbody>
</table>

- focus of this course
 - programs
 - device drivers
 - instructions
 - registers
 - datapaths
 - controllers
 - adders
 - memories
 - AND gates
 - NOT gates
 - amplifiers
 - filters
 - transistors
 - diodes
 - electrons
Discipline

• Intentionally restrict design choices

• Example: Digital discipline
 – Discrete voltages (0 V, 5 V) instead of continuous (0V – 5V)
 – Simpler to design than analog circuits – can build more sophisticated systems
 – Digital systems replacing analog predecessors:
 • i.e., digital cameras, digital television, cell phones, CDs
The Three –y’s

• Hierarchy
 • A system divided into modules and submodules

• Modularity
 • Having well-defined functions and interfaces

• Regularity
 • Encouraging uniformity, so modules can be easily reused
Example: Flintlock Rifle

- Hierarchy

- Three main modules: Lock, stock, and barrel

- Submodules of lock: Hammer, flint, frizzen, etc.
Example Flintlock Rifle

- **Modularity**
 - Function of stock: mount barrel and lock
 - Interface of stock: length and location of mounting pins

- **Regularity**
 - Interchangeable parts
The Art of Managing Complexity

• Abstraction
• Discipline
• The Three –y’s
 • Hierarchy
 • Modularity
 • Regularity
The Digital Abstraction

• Most physical variables are **continuous**
 • Voltage on a wire (1.33 V, 9 V, 12.2 V)
 • Frequency of an oscillation (60 Hz, 33.3 Hz, 44.1 kHz)
 • Position of mass (0.25 m, 3.2 m)
• Digital abstraction considers **discrete subset** of values
 • 0 V, 5 V
 • “0”, “1”
The Analytical Engine

- Designed by Charles Babbage from 1834 – 1871
- Considered to be the first digital computer
- Built from mechanical gears, where each gear represented a discrete value (0-9)
- Babbage died before it was finished
Digital Discipline: Binary Values

• Two discrete values
 • 1 and 0
 • 1 = TRUE = HIGH = ON
 • 0 = FALSE = LOW = OFF

• How to represent 1 and 0
 • Voltage levels, rotating gears, fluid levels, etc.

• Digital circuits use voltage levels to represent 1 and 0
 • Bit = binary digit
 • Represents the status of a digital signal (2 values)
Why Digital Systems?

• Easier to design
• Fast
• Can overcome noise
• Error detection/correction
George Boole, 1815-1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen’s College in Ireland
- Wrote An Investigation of the Laws of Thought (1854)
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT
Number Systems

- Decimal
 - Base 10
- Binary
 - Base 2
- Hexadecimal
 - Base 16
Decimal Numbers

- Base 10 (our everyday number system)

\[5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0 \]
Binary Numbers

- Base 2 (computer number system)

\[1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0\]

<table>
<thead>
<tr>
<th>One</th>
<th>Eight</th>
<th>One</th>
<th>Four</th>
<th>Zero</th>
<th>Two</th>
<th>One</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Base 2
Powers of Two

• \(2^0 = \)
• \(2^1 = \)
• \(2^2 = \)
• \(2^3 = \)
• \(2^4 = \)
• \(2^5 = \)
• \(2^6 = \)
• \(2^7 = \)

• \(2^8 = \)
• \(2^9 = \)
• \(2^{10} = \)
• \(2^{11} = \)
• \(2^{12} = \)
• \(2^{13} = \)
• \(2^{14} = \)
• \(2^{15} = \)
Powers of Two

- $2^0 = 1$
- $2^1 = 2$
- $2^2 = 4$
- $2^3 = 8$
- $2^4 = 16$
- $2^5 = 32$
- $2^6 = 64$
- $2^7 = 128$
- Handy to memorize up to 2^{10}

- $2^8 = 256$
- $2^9 = 512$
- $2^{10} = 1024$
- $2^{11} = 2048$
- $2^{12} = 4096$
- $2^{13} = 8192$
- $2^{14} = 16384$
- $2^{15} = 32768$
Bits, Bytes, Nibbles ...

- **Bits**

- **Bytes** = 8 bits

- **Nibble** = 4 bits

- **Words** = 32 bits
 - Hex digit to represent nibble
Decimal to Binary Conversion

- Two Methods:
 - Method 1: Find largest power of 2 that fits, subtract and repeat
 - Method 2: Repeatedly divide by 2, remainder goes in next most significant bit
D2B: Method 1

• Find largest power of 2 that fits, subtract, repeat

53_{10}
D2B: Method 1

- Find largest power of 2 that fits, subtract, repeat

\[
\begin{align*}
53_{10} & \quad 32 \times 1 \\
53 - 32 & = 21 \quad 16 \times 1 \\
21 - 16 & = 5 \quad 4 \times 1 \\
5 - 4 & = 1 \quad 1 \times 1 \\
\end{align*}
\]

\[= 110101_2\]
D2B: Method 2

• Repeatedly divide by 2, remainder goes in next most significant bit

\[53_{10} = \]
D2B: Method 2

- Repeatedly divide by 2, remainder goes in next most significant bit

\[53_{10} = \frac{53}{2} = 26 \text{ R1} \]
\[26/2 = 13 \text{ R0} \]
\[13/2 = 6 \text{ R1} \]
\[6/2 = 3 \text{ R0} \]
\[3/2 = 1 \text{ R1} \]
\[1/2 = 0 \text{ R1} \]

\[= 110101_{2} \]
Number Conversion

• Binary to decimal conversion
 • Convert 10011_2 to decimal
 $16 \times 1 + 8 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 19_{10}$

• Decimal to binary conversion
 • Convert 47_{10} to binary
 $32 \times 1 + 16 \times 0 + 8 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 101111_2$
D2B Example

- Convert 75_{10} to binary
D2B Example

- Convert 75_{10} to binary

$$75_{10} = 64 + 8 + 2 + 1 = 1001011_2$$

- Or

$$\begin{align*}
75/2 &= 37 \quad \text{R1} \\
37/2 &= 18 \quad \text{R1} \\
18/2 &= 9 \quad \text{R0} \\
9/2 &= 4 \quad \text{R1} \\
4/2 &= 2 \quad \text{R0} \\
2/2 &= 1 \quad \text{R0} \\
1/2 &= 0 \quad \text{R1}
\end{align*}$$
Binary Values and Range

• N-digit decimal number
 • How many values?
 • Range?

• Example:
 3-digit decimal number
 • Possible values
 • Range
Binary Values and Range

• N-digit decimal number
 • How many values?
 • 10^N
 • Range?
 • $[0, 10^N - 1]$

• Example:
 3-digit decimal number
 • Possible values
 • $10^3 = 1000$
 • Range
 • $[0, 999]$
Binary Values and Range

• N-bit binary number
 • How many values?
 • Range?

• Example:
 3-bit binary number
 • Possible values
 • Range
Binary Values and Range

- N-bit binary number
 - How many values?
 - 2^N
 - Range?
 - $[0, 2^N - 1]$

- Example:
 3-bit binary number
 - Possible values
 - $2^3 = 8$
 - Range
 - $[0, 7] = [000_2, 111_2]$
Binary Values and Range

- N-digit decimal number
 - How many values?
 - \(10^N\)
 - Range?
 - \([0, 10^N - 1]\)

- Example:
 3-digit decimal number
 - Possible values
 - \(10^3 = 1000\)
 - Range
 - \([0, 999]\)

- N-bit binary number
 - How many values?
 - \(2^N\)
 - Range?
 - \([0, 2^N - 1]\)

- Example:
 3-bit binary number
 - Possible values
 - \(2^3 = 8\)
 - Range
 - \([0, 7] = [000_2, 111_2]\)
Hexadecimal Numbers

• Base 16 number system

• Shorthand for binary
 • Four binary digits (4-bit binary number) is a single hex digit
Hexadecimal Numbers

<table>
<thead>
<tr>
<th>Hex Digit</th>
<th>Decimal Equivalent</th>
<th>Binary Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Hexadecimal Numbers

<table>
<thead>
<tr>
<th>Hex Digit</th>
<th>Decimal Equivalent</th>
<th>Binary Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Hexadecimal to Binary Conversion

• Hexadecimal to binary conversion:
 • Convert $4AF_{16}$ (also written $0x4AF$) to binary

• Hexadecimal to decimal conversion:
 • Convert $0x4AF$ to decimal
Hexadecimal to Binary Conversion

• Hexadecimal to binary conversion:
 • Convert $4AF_{16}$ (also written $0x4AF$) to binary
 • $0x4AF = 0100\ 1010\ 1111_2$

• Hexadecimal to decimal conversion:
 • Convert $0x4AF$ to decimal
 • $4 \times 16^2 + 10 \times 16^1 + 15 \times 16^0 = 1199_{10}$
Number Systems

• Popular
 • Decimal Base 10
 • Binary Base 2
 • Hexadecimal Base 16

• Others
 • Octal Base 8
 • Any other base
Octal Numbers

- Same as hex with one less binary digit

<table>
<thead>
<tr>
<th>Octal Digit</th>
<th>Decimal Equivalent</th>
<th>Binary Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>111</td>
</tr>
</tbody>
</table>
Number Systems

• In general, an N-digit number \(\{a_{N-1}a_{N-2} \ldots a_1a_0\} \) of base \(R \) in decimal equals

 \[a_{N-1}R^{N-1} + a_{N-2}R^{N-2} + \cdots + a_1R^1 + a_0R^0 \]

• Example: 4-digit \(\{5173\} \) of base 8 (octal)
Number Systems

• In general, an N-digit number \(\{a_{N-1}a_{N-2} \ldots a_1a_0\} \) of base \(R \) in decimal equals
 \[
 a_{N-1}R^{N-1} + a_{N-2}R^{N-2} + \cdots + a_1R^1 + a_0R^0
 \]

• Example: 4-digit \(\{5173\} \) of base 8 (octal)
 \[
 5 \times 8^3 + 1 \times 8^2 + 7 \times 8^1 + 3 \times 8^0 = 2683_{10} \]
Decimal to Octal Conversion

- Remember two methods for D2B conversion
 - 1: remove largest multiple; 2: repeated divide
- Convert 29_{10} to octal
Decimal to Octal Conversion

• Remember two methods for D2B conversion
 • 1: remove largest multiple; 2: repeated divide
• Convert 29_{10} to octal
• Method 2

\[
\begin{align*}
29 / 8 &= 3 \quad \text{R5} \quad \text{lsb} \\
3 / 8 &= 0 \quad \text{R3} \quad \text{msb}
\end{align*}
\]

$29_{10} = 35_8$
Decimal to Octal Conversion

• Remember two methods for D2B conversion
 • 1: remove largest multiple; 2: repeated divide
• Convert 29_{10} to octal
• Method 1

\[
\begin{align*}
29 & \quad 8 \times 3 = 24 \\
29 - 24 & = 5 \\
\end{align*}
\]

\[
29_{10} = 24 + 5 = 3 \times 8^1 + 5 \times 8^0 = 35_8
\]

• Or (better scalability)

\[
29_{10} = 16 + 8 + 4 + 1 = 11101_2 = 35_8
\]
Octal to Decimal Conversion

• Convert 163_8 to decimal
Octal to Decimal Conversion

• Convert 163_8 to decimal

 • $163_8 = 1 \times 8^2 + 6 \times 8^1 + 3$
 • $163_8 = 64 + 48 + 3$
 • $163_8 = 115_{10}$
Recap: Binary and Hex Numbers

• Example 1: Convert 83_{10} to hex

• Example 2: Convert 01101011_2 to hex and decimal

• Example 3: Convert $0xCA3$ to binary and decimal
Recap: Binary and Hex Numbers

- **Example 1:** Convert 83_{10} to hex
 - $83_{10} = 64 + 16 + 2 + 1 = 1010011_2$
 - $1010011_2 = 101 0011_2 = 53_{16}$

- **Example 2:** Convert 01101011_2 to hex and decimal
 - $01101011_2 = 0110 1011_2 = 6B_{16}$
 - $0x6B = 6 \times 16^1 + 11 \times 16^0 = 96 + 11 = 107$

- **Example 3:** Convert $0xCA3$ to binary and decimal
 - $0xCA3 = 1100 1010 0011_2$
 - $0xCA3 = 12 \times 16^2 + 10 \times 16^1 + 3 \times 16^0 = 3235_{10}$
Large Powers of Two

- $2^{10} = 1 \text{kilo} \approx 1000 (1024)$
- $2^{20} = 1 \text{mega} \approx 1 \text{million} \ (1,048,576)$
- $2^{30} = 1 \text{giga} \approx 1 \text{billion} \ (1,073,741,824)$
- $2^{40} = 1 \text{tera} \approx 1 \text{trillion} \ (1,099,511,627,776)$
Large Powers of Two: Abbreviations

- $2^{10} = 1 \text{ kilo} \approx 1000$ (1024)

 for example: 1 kB = 1024 Bytes
 1 kb = 1024 bits

- $2^{20} = 1 \text{ mega} \approx 1 \text{ million}$ (1,048,576)

 for example: 1 MiB, 1 Mib (1 megabit)

- $2^{30} = 1 \text{ giga} \approx 1 \text{ billion}$ (1,073,741,824)

 for example: 1 GiB, 1 Gib
Estimating Powers of Two

• What is the value of 2^{24}?

• How many values can a 32-bit variable represent?
Estimating Powers of Two

- What is the value of 2^{24}?
 - $2^4 \times 2^{20} \approx 16$ million

- How many values can a 32-bit variable represent?
 - $2^2 \times 2^{30} \approx 4$ billion
Binary Codes

Another way of representing decimal numbers in binary

Example binary codes:
- Weighted codes
 - Binary Coded Decimal (BCD) (8-4-2-1 code)
 - 6-3-1-1 code
 - 8-4-2-1 code (simple binary)
- Gray codes
- Excess-3 code
- 2-out-of-5 code
ASCII Code

<table>
<thead>
<tr>
<th>Character</th>
<th>ASCII Code</th>
<th>Character</th>
<th>ASCII Code</th>
<th>Character</th>
<th>ASCII Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>@</td>
<td>1 0 1 0 1 0</td>
<td>`</td>
<td>1 1 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>1 0 1 0 0 0</td>
<td>A</td>
<td>1 0 1 0 0 1</td>
<td>a</td>
<td>1 1 0 0 0 1</td>
</tr>
<tr>
<td>"</td>
<td>1 0 1 0 0 1</td>
<td>B</td>
<td>1 0 0 1 0 0</td>
<td>b</td>
<td>1 1 0 0 0 1</td>
</tr>
<tr>
<td>#</td>
<td>1 0 1 0 1 0</td>
<td>C</td>
<td>1 0 0 1 0 1</td>
<td>c</td>
<td>1 1 0 0 0 1</td>
</tr>
<tr>
<td>$</td>
<td>1 0 1 0 1 1</td>
<td>D</td>
<td>1 0 0 1 1 0</td>
<td>d</td>
<td>1 1 0 0 1 0</td>
</tr>
<tr>
<td>%</td>
<td>1 0 1 0 0 0</td>
<td>E</td>
<td>1 0 0 1 0 1</td>
<td>e</td>
<td>1 1 0 0 1 0</td>
</tr>
<tr>
<td>&</td>
<td>1 0 1 0 1 1</td>
<td>F</td>
<td>1 0 0 1 1 1</td>
<td>f</td>
<td>1 1 0 1 0 0</td>
</tr>
<tr>
<td>(</td>
<td>1 0 1 0 0 1</td>
<td>G</td>
<td>1 0 1 0 0 0</td>
<td>g</td>
<td>1 1 0 1 0 0</td>
</tr>
<tr>
<td>)</td>
<td>1 0 1 0 1 0</td>
<td>H</td>
<td>1 0 1 0 0 1</td>
<td>h</td>
<td>1 1 0 1 0 1</td>
</tr>
<tr>
<td>*</td>
<td>1 0 1 0 1 1</td>
<td>I</td>
<td>1 0 1 0 1 0</td>
<td>i</td>
<td>1 1 0 1 0 1</td>
</tr>
<tr>
<td>+</td>
<td>1 0 1 1 0 1</td>
<td>J</td>
<td>1 0 1 0 0 0</td>
<td>j</td>
<td>1 1 0 1 0 1</td>
</tr>
<tr>
<td>,</td>
<td>1 0 1 0 0 0</td>
<td>K</td>
<td>1 0 1 0 1 0</td>
<td>k</td>
<td>1 1 0 1 1 0</td>
</tr>
<tr>
<td>.</td>
<td>1 0 1 0 1 0</td>
<td>L</td>
<td>1 0 1 0 0 1</td>
<td>l</td>
<td>1 1 0 1 1 1</td>
</tr>
<tr>
<td>/</td>
<td>1 0 1 0 1 1</td>
<td>M</td>
<td>1 0 1 0 1 0</td>
<td>m</td>
<td>1 1 0 1 1 1</td>
</tr>
<tr>
<td>0</td>
<td>1 0 1 0 0 1</td>
<td>N</td>
<td>1 0 1 0 1 0</td>
<td>n</td>
<td>1 1 0 1 1 1</td>
</tr>
<tr>
<td>1</td>
<td>1 0 1 0 0 0</td>
<td>O</td>
<td>1 0 1 0 1 1</td>
<td>o</td>
<td>1 1 0 1 1 1</td>
</tr>
<tr>
<td>2</td>
<td>1 0 1 0 1 0</td>
<td>P</td>
<td>1 0 1 1 0 0</td>
<td>p</td>
<td>1 1 1 0 0 0</td>
</tr>
<tr>
<td>3</td>
<td>1 0 1 1 0 0</td>
<td>Q</td>
<td>1 0 1 1 0 1</td>
<td>q</td>
<td>1 1 1 0 0 1</td>
</tr>
<tr>
<td>4</td>
<td>1 0 1 1 0 1</td>
<td>R</td>
<td>1 0 1 1 1 0</td>
<td>r</td>
<td>1 1 1 0 1 0</td>
</tr>
<tr>
<td>5</td>
<td>1 0 1 1 1 0</td>
<td>S</td>
<td>1 0 1 1 1 1</td>
<td>s</td>
<td>1 1 1 0 1 1</td>
</tr>
<tr>
<td>6</td>
<td>1 0 1 1 1 1</td>
<td>T</td>
<td>1 0 1 1 0 0</td>
<td>t</td>
<td>1 1 1 0 1 0</td>
</tr>
<tr>
<td>7</td>
<td>1 0 1 1 0 0</td>
<td>U</td>
<td>1 0 1 1 0 1</td>
<td>u</td>
<td>1 1 1 0 1 0</td>
</tr>
<tr>
<td>8</td>
<td>1 0 1 1 0 1</td>
<td>V</td>
<td>1 0 1 1 1 0</td>
<td>v</td>
<td>1 1 1 0 1 1</td>
</tr>
<tr>
<td>9</td>
<td>1 0 1 1 1 0</td>
<td>W</td>
<td>1 0 1 1 1 1</td>
<td>w</td>
<td>1 1 1 0 1 1</td>
</tr>
<tr>
<td>:</td>
<td>1 0 1 1 1 0</td>
<td>X</td>
<td>1 0 1 1 0 0</td>
<td>x</td>
<td>1 1 1 0 0 0</td>
</tr>
<tr>
<td>;</td>
<td>1 0 1 1 1 1</td>
<td>Y</td>
<td>1 0 1 0 0 0</td>
<td>y</td>
<td>1 1 1 0 0 1</td>
</tr>
<tr>
<td><</td>
<td>1 0 1 1 0 1</td>
<td>Z</td>
<td>1 0 1 0 0 1</td>
<td>z</td>
<td>1 1 1 0 0 1</td>
</tr>
<tr>
<td>=</td>
<td>1 0 1 1 1 0</td>
<td>[</td>
<td>1 0 1 1 0 1</td>
<td>[</td>
<td>1 1 1 0 0 1</td>
</tr>
<tr>
<td>></td>
<td>1 0 1 1 1 1</td>
<td>\</td>
<td>1 0 1 1 1 0</td>
<td>\</td>
<td>1 1 1 0 0 1</td>
</tr>
<tr>
<td>?</td>
<td>1 0 1 1 1 0</td>
<td>]</td>
<td>1 0 1 1 1 1</td>
<td>]</td>
<td>1 1 1 0 0 1</td>
</tr>
<tr>
<td>?</td>
<td>1 0 1 1 1 1</td>
<td>^</td>
<td>1 0 1 1 1 0</td>
<td>^</td>
<td>1 1 1 0 0 1</td>
</tr>
<tr>
<td>~</td>
<td>1 0 1 1 1 0</td>
<td>_</td>
<td>1 0 1 1 1 1</td>
<td>_</td>
<td>1 1 1 0 0 1</td>
</tr>
<tr>
<td></td>
<td>1 1 1 1 1 1</td>
<td>delete</td>
<td>1 1 1 1 1 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Cengage Learning 2014
Binary Codes

Each code combination represents a single decimal digit.

<table>
<thead>
<tr>
<th>Decimal #</th>
<th>8-4-2-1 (BCD)</th>
<th>6-3-1-1</th>
<th>Excess-3</th>
<th>2-out-of-5</th>
<th>Gray</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0000</td>
<td>0011</td>
<td>00011</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>0001</td>
<td>0100</td>
<td>00101</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>0011</td>
<td>0101</td>
<td>00110</td>
<td>0011</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>0100</td>
<td>0110</td>
<td>01001</td>
<td>0010</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>0101</td>
<td>0111</td>
<td>01010</td>
<td>0110</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>0111</td>
<td>1000</td>
<td>01100</td>
<td>1110</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>1000</td>
<td>1001</td>
<td>10001</td>
<td>1010</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>1001</td>
<td>1010</td>
<td>10010</td>
<td>1011</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>1011</td>
<td>1011</td>
<td>10100</td>
<td>1001</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>1100</td>
<td>1100</td>
<td>11000</td>
<td>1000</td>
</tr>
</tbody>
</table>
Gray Codes

- Next number differs in only one bit position
 - **Example:** 000, 001, 011, 010, 110, 111, 101, 100

- **Example use:** Analog-to-Digital (A/D) converters. Changing 2 bits at a time (i.e., 011 → 100) could cause large inaccuracies.

- Will use in K-maps

<table>
<thead>
<tr>
<th>Decimal #</th>
<th>Gray</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0011</td>
</tr>
<tr>
<td>3</td>
<td>0010</td>
</tr>
<tr>
<td>4</td>
<td>0110</td>
</tr>
<tr>
<td>5</td>
<td>1110</td>
</tr>
<tr>
<td>6</td>
<td>1010</td>
</tr>
<tr>
<td>7</td>
<td>1011</td>
</tr>
<tr>
<td>8</td>
<td>1001</td>
</tr>
<tr>
<td>9</td>
<td>1000</td>
</tr>
</tbody>
</table>
Addition

• Decimal

\[
\begin{array}{c}
3734 \\
+ 5168 \\
\hline
5168
\end{array}
\]

• Binary

\[
\begin{array}{c}
1011 \\
+ 0011 \\
\hline
0011
\end{array}
\]
Addition

- Decimal

 \[
 \begin{array}{c}
 3734 \\
 + 5168 \\
 \hline
 8902
 \end{array}
 \]

 \[11 \xrightarrow{\text{carries}}\]

- Binary

 \[
 \begin{array}{c}
 1011 \\
 + 0011 \\
 \hline
 1011
 \end{array}
 \]
Addition

- Decimal

 \[
 \begin{array}{c}
 3734 \\
 \text{+} \\
 5168 \\
 \hline
 8902
 \end{array}
 \]

 \[
 \begin{array}{c}
 11 \xleftarrow{\text{carries}}
 \end{array}
 \]

- Binary

 \[
 \begin{array}{c}
 1011 \\
 \text{+} \\
 0011 \\
 \hline
 1110
 \end{array}
 \]

 \[
 \begin{array}{c}
 11 \xleftarrow{\text{carries}}
 \end{array}
 \]
Binary Addition Examples

• Add the following 4-bit binary numbers

 1001
 + 0101

 1010

• Add the following 4-bit binary numbers

 1011
 + 0110

 1101
Binary Addition Examples

- Add the following 4-bit binary numbers:

 \[
 \begin{array}{c}
 1001 \\
 + 0101 \\
 \hline
 1110
 \end{array}
 \]

- Add the following 4-bit binary numbers:

 \[
 \begin{array}{c}
 1011 \\
 + 0110 \\
 \hline
 1010
 \end{array}
 \]
Binary Addition Examples

• Add the following 4-bit binary numbers

\[
\begin{array}{ccc}
1001 & + & 0101 \\
\hline
1110
\end{array}
\]

Overflow!

• Add the following 4-bit binary numbers

\[
\begin{array}{ccc}
111 & + & 0110 \\
\hline
10001
\end{array}
\]

Overflow!
Overflow

- Digital systems operate on a **fixed number of bits**
- Overflow: when result is too big to fit in the available number of bits
- See previous example of $11 + 6$
Signed Binary Numbers

- Sign/Magnitude Numbers
- Two’s Complement Numbers
Sign/Magnitude

- 1 sign bit, \(N-1 \) magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0
 - Negative number: sign bit = 1

\[
A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i
\]

- Example, 4-bit sign/magnitude representations of ±6:
 - +6 =
 - -6 =

- Range of an \(N \)-bit sign/magnitude number:
Sign/Magnitude

- 1 sign bit, \(N-1 \) magnitude bits
- Sign bit is the most significant (left-most) bit
 - **Positive number**: sign bit = 0
 - **Negative number**: sign bit = 1

\[
A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i
\]

- Example, 4-bit sign/magnitude representations of ±6:
 - \(+6 = 0110\)
 - \(-6 = 1110\)

- Range of an \(N \)-bit sign/magnitude number:
 - \([-\left(2^{N-1}-1\right), 2^{N-1}-1]\)
Sign/Magnitude Numbers

• Problems:
 • Addition doesn’t work, for example -6 + 6:
 \[
 \begin{array}{c}
 1110 \\
 + 0110 \\
 \hline
 1010
 \end{array}
 \]
 • Two representations of 0 (± 0):
 • (+0) =
 • (−0) =
Sign/Magnitude Numbers

• Problems:
 • Addition doesn’t work, for example $-6 + 6$:
 $\begin{align*}
 1 & 1 1 0 \\
 + & 0 1 1 0 \\
 \hline
 1 & 0 1 0 0 \quad (\text{wrong!})
 \end{align*}$
 • Two representations of 0 (± 0):
 • $(+0) = 0000$
 • $(−0) = 1000$
Two’s Complement Numbers

- Don’t have same problems as sign/magnitude numbers:
 - Addition works
 - Single representation for 0

- Range of representable numbers not symmetric
 - One extra negative number
Two’s Complement Numbers

- msb has value of -2^{N-1}

\[A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i \]

- The most significant bit still indicates the sign (1 = negative, 0 = positive)

- Range of an N-bit two’s comp number?

- Most positive 4-bit number?

- Most negative 4-bit number?
Two’s Complement Numbers

• msb has value of -2^{N-1}

$$A = a_{n-1}(-2^{n-1}) + \sum_{i=0}^{n-2} a_i 2^i$$

• The most significant bit still indicates the sign (1 = negative, 0 = positive)

• Range of an N-bit two’s comp number?
 • $[-(2^{N-1}), 2^{N-1} - 1]$

• Most positive 4-bit number? 0111

• Most negative 4-bit number? 1000
“Taking the Two’s Complement”

- **Flips the sign** of a two’s complement number
- **Method:**
 1. Invert the bits
 2. Add 1
- **Example:** Flip the sign of $3_{10} = 0011_2$
“Taking the Two’s Complement”

• Flips the sign of a two’s complement number

• Method:
 1. Invert the bits
 2. Add 1

• Example: Flip the sign of $3_{10} = 0011_2$
 1. 1100
 2. $+ 1$
 $1101 = -3_{10}$
Two’s Complement Examples

• Take the two’s complement of $6_{10} = 0110_2$

• What is the decimal value of the two’s complement number 1001_2?
Two’s Complement Examples

- Take the two’s complement of $6_{10} = 0110_2$
 1. 1001
 2. $+1$
 $1010_2 = -6_{10}$

- What is the decimal value of the two’s complement number 1001_2?
 1. 0110
 2. $+1$
 $0111_2 = 7_{10}$, so $1001_2 = -7_{10}$
Two’s Complement Addition

- Add $6 + (-6)$ using two’s complement numbers

\[
\begin{array}{c}
0110 \\
+ 1010 \hline
\end{array}
\]

- Add $-2 + 3$ using two’s complement numbers

\[
\begin{array}{c}
1110 \\
+ 0011 \hline
\end{array}
\]
Two’s Complement Addition

- Add 6 + (-6) using two’s complement numbers

\[
\begin{array}{c}
111 \\
0110 \\
+ 1010 \\
\hline
10000
\end{array}
\]

- Add -2 + 3 using two’s complement numbers

\[
\begin{array}{c}
1110 \\
+ 0011 \\
\hline
10000
\end{array}
\]
Two’s Complement Addition

• Add 6 + (-6) using two’s complement numbers

\[
\begin{array}{c}
111 \\
0110 \\
+ 1010 \\
\hline
10000
\end{array}
\]

• Add -2 + 3 using two’s complement numbers

\[
\begin{array}{c}
111 \\
1110 \\
+ 0011 \\
\hline
10001
\end{array}
\]
Increasing Bit Width

• Extend number from N to M bits \((M > N)\):
 • Sign-extension
 • Zero-extension
Sign-Extension

- Sign bit copied to msb’s
- Number value is same

- Example 1
 - 4-bit representation of 3 = 0011
 - 8-bit sign-extended value:

- Example 2
 - 4-bit representation of -7 = 1001
 - 8-bit sign-extended value:
Sign-Extension

• Sign bit copied to msb’s
• Number value is same

• Example 1
 • 4-bit representation of 3 = 0011
 • 8-bit sign-extended value: 00000011

• Example 2
 • 4-bit representation of -7 = 1001
 • 8-bit sign-extended value: 11111001
Zero-Extension

• Zeros copied to msb’s
• Value changes for negative numbers

• Example 1
 • 4-bit value = \(0011_2\)
 • 8-bit zero-extended value:

• Example 2
 • 4-bit value = \(1001\)
 • 8-bit zero-extended value:
Zero-Extension

- Zeros copied to msb’s
- Value changes for negative numbers

- Example 1
 - 4-bit value = 0011\textsubscript{2}
 - 8-bit zero-extended value: 00000011

- Example 2
 - 4-bit value = 1001
 - 8-bit zero-extended value: 00001001
Zero-Extension

- Zeros copied to msb’s
- Value changes for negative numbers

- Example 1
 - 4-bit value = \(0011_2 = 3_{10}\)
 - 8-bit zero-extended value: \(00000011 = 3_{10}\)

- Example 2
 - 4-bit value = \(1001 = -7_{10}\)
 - 8-bit zero-extended value: \(00001001 = 9_{10}\)
Number System Comparison

<table>
<thead>
<tr>
<th>Number System</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned</td>
<td>$[0, 2^{N-1}]$</td>
</tr>
<tr>
<td>Sign/Magnitude</td>
<td>$[-(2^{N-1}-1), 2^{N-1}-1]$</td>
</tr>
<tr>
<td>Two’s Complement</td>
<td>$[-2^{N-1}, 2^{N-1}-1]$</td>
</tr>
</tbody>
</table>

For example, 4-bit representation:

- **Unsigned**
 - 0000 to 0111
 - 1000 to 1111

- **Two’s Complement**
 - 1000 to 1111
 - 0000 to 1111

- **Sign/Magnitude**
 - 0000 to 1111
 - 1000 to 1111
Logic Gates

- **Perform logic functions:**
 - inversion (NOT), AND, OR, NAND, NOR, etc.
- **Single-input:**
 - NOT gate, buffer
- **Two-input:**
 - AND, OR, XOR, NAND, NOR, XNOR
- **Multiple-input**
Single-Input Logic Gates

NOT

![NOT Gate Diagram]

\[Y = \overline{A} \]

<table>
<thead>
<tr>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

BUF

![BUF Gate Diagram]

\[Y = A \]

<table>
<thead>
<tr>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
• Bubble on wire indicates inversion

\[\text{NOT} \]

\[Y = \overline{A} \]

<table>
<thead>
<tr>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\text{BUF} \]

\[Y = A \]

<table>
<thead>
<tr>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

• Note: bar over variable indicates complement (invert value)
Two-Input Logic Gates

AND

\[Y = AB \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

OR

\[Y = A + B \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Two-Input Logic Gates

AND

\[Y = AB \]

\[
\begin{array}{ccc}
A & B & Y \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\]

OR

\[Y = A + B \]

\[
\begin{array}{ccc}
A & B & Y \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\]
More Two-Input Logic Gates

XOR

\[Y = A \oplus B \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NAND

\[Y = \overline{A B} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NOR

\[Y = \overline{A + B} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

XNOR

\[Y = A \oplus B \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
More Two-Input Logic Gates

XOR

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[Y = A \oplus B \]

![XOR gate](image)

NAND

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[Y = \overline{A} \overline{B} \]

![NAND gate](image)

NOR

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[Y = \overline{A} + \overline{B} \]

![NOR gate](image)

XNOR

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[Y = \overline{A} \oplus \overline{B} \]

![XNOR gate](image)
Multiple-Input Logic Gates

NOR3

\[Y = \overline{A + B + C} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

AND3

\[Y = ABC \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Multiple-Input Logic Gates

NOR3

\[Y = \overline{A + B + C} \]

\[
\begin{array}{ccc|c}
A & B & C & Y \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
\end{array}
\]

AND3

\[Y = ABC \]

\[
\begin{array}{ccc|c}
A & B & C & Y \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
\end{array}
\]

- Multi-input XOR = Odd parity (#on inputs odd → 1)
Logic Levels

- Discrete voltages represent 1 and 0
- For example:
 - $0 = \text{ground (GND) or 0 volts}$
 - $1 = V_{DD}$ or 5 volts
- What about 4.99 volts? Is that a 0 or a 1?
- What about 3.2 volts?
Logic Levels

• Must have *range* of voltages for 1 and 0

• Different ranges for inputs and outputs to allow for *noise*
What is Noise?

• Anything that degrades the signal
 • E.g., resistance, power supply noise, coupling to neighboring wires, etc.

• Example: a gate (driver) outputs 5 V but, because of resistance in a long wire, receiver gets 4.5 V
The Static Discipline

- With logically valid inputs, every circuit element must produce logically valid outputs.

- Use limited ranges of voltages to represent discrete values.
Real Logic Levels

- Want driver to output “clean” high/low and receiver to handle noisy high/low
Real Logic Levels

- Want driver to output “clean” high/low and receiver to handle noisy high/low
Real Logic Levels

Driver Receiver

Output Characteristics

Input Characteristics

Logic High Output Range

Logic Low Output Range

Logic High Input Range

Logic Low Input Range

\[NM_H = V_{OH} - V_{IH} \]

\[NM_L = V_{IL} - V_{OL} \]
V_{DD} Scaling

- In 1970’s and 1980’s, V_{DD} = 5 V
- V_{DD} has dropped
 - 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, ...

- Avoid frying tiny transistors
- Save power

- Be careful connecting chips with different supply voltages
 - Easy to fry if not careful
Logic Family Examples

<table>
<thead>
<tr>
<th>Logic Family</th>
<th>V_{DD}</th>
<th>V_{IL}</th>
<th>V_{IH}</th>
<th>V_{OL}</th>
<th>V_{OH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTL</td>
<td>5 (4.75 - 5.25)</td>
<td>0.8</td>
<td>2.0</td>
<td>0.4</td>
<td>2.4</td>
</tr>
<tr>
<td>CMOS</td>
<td>5 (4.5 - 6)</td>
<td>1.35</td>
<td>3.15</td>
<td>0.33</td>
<td>3.84</td>
</tr>
<tr>
<td>LVTTL</td>
<td>3.3 (3 - 3.6)</td>
<td>0.8</td>
<td>2.0</td>
<td>0.4</td>
<td>2.4</td>
</tr>
<tr>
<td>LVCMOS</td>
<td>3.3 (3 - 3.6)</td>
<td>0.9</td>
<td>1.8</td>
<td>0.36</td>
<td>2.7</td>
</tr>
</tbody>
</table>
Transistors

• Logic gates built from transistors
• Simple model: 3-ported voltage-controlled switch
 • 2 ports connected depending on voltage of 3rd
 • d and s are connected (ON) when g is 1
Robert Noyce, 1927-1990

- Nicknamed “Mayor of Silicon Valley”
- Cofounded Fairchild Semiconductor in 1957
- Cofounded Intel in 1968
- Co-invented the integrated circuit
Silicon

- Transistors built from silicon, a semiconductor
- Pure silicon is a poor conductor (no free charges)
- Doped silicon is a good conductor (free charges)
 - n-type (free negative charges, electrons)
 - p-type (free positive charges, holes)
MOS Transistors

- Metal oxide silicon (MOS) transistors:
 - Polysilicon (used to be metal) gate
 - Oxide (silicon dioxide) insulator
 - Doped silicon

![Diagram of nMOS transistor]

- nMOS
- Polysilicon
- SiO₂
- Source
- Drain
- Gate
- Substrate
- p
- n
nMOS Transistors

- Gate = 0
- OFF (no connection between source and drain)

- Gate = 1
- ON (channel between source and drain)

Diode connection from p to n doped area → current cannot travel from n → p
pMOS Transistors

- pMOS transistor is opposite of nMOS
 - ON when Gate = 0
 - OFF when Gate = 1
Transistor Function

- Voltage controlled switch

nMOS

pMOS

\[g = 0 \]

\[g = 1 \]
Transistor Composition

- **nMOS**: pass good 0’s
 - Connect source to GND
 - “Pull down” transistor

- **pMOS**: pass good 1’s
 - Connect source to VDD
 - “Pull up” transistor

- Build logic gates from composition
 - CMOS = complementary MOS
CMOS Gate Structure

- Pull-up pMOS network connects to V_{DD}
- Pull-down nMOS network connects to GND
- Use series and parallel connections to implement gate logic
CMOS Gates: NOT Gate

\[
Y = \overline{A}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>P1</th>
<th>N1</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CMOS Gates: NOT Gate

\[
\begin{array}{c|c}
A & Y \\
\hline
0 & 1 \\
1 & 0 \\
\end{array}
\]

\[
Y = \overline{A}
\]

\[
\begin{array}{c|c|c|c}
A & P1 & N1 & Y \\
\hline
0 & ON & OFF & 1 \\
1 & OFF & ON & 0 \\
\end{array}
\]

\[
\text{NOT} \quad V_{DD} \\
\quad A \quad Y \\
\quad \text{N1} \\
\quad \text{GND}
\]
CMOS Gates: NAND Gate

NAND

\[Y = \overline{AB} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>P1</th>
<th>P2</th>
<th>N1</th>
<th>N2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CMOS Gates: NAND Gate

NAND Gate

The NAND gate is a digital logic gate that outputs false only when both inputs are true. It is the complement of the OR gate. The symbol for a NAND gate is shown below.

\[Y = \overline{A \cdot B} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>P1</th>
<th>P2</th>
<th>N1</th>
<th>N2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>0</td>
</tr>
</tbody>
</table>
CMOS Gates: NOR Gate

• How can you build three input \((A, B, C)\) NOR gate?
• How can you build three input \((A, B, C)\) NOR gate?

Only high output when all three pMOS in series are “on” and create a path from output to \(V_{DD}\).
CMOS Gates: AND Gate

- How can you build 2 input AND gate?
CMOS Gates: AND Gate

- How can you build a 2 input AND gate?

![Diagram of AND gate]
CMOS Gates: AND Gate

- How can you build a 2-input AND gate?

![Diagram of a 2-input AND gate](image)

Note: AND requires 2 more gates than NAND. Inverted logic is more efficient implementation.
Transmission Gates

- nMOS pass 1’s poorly, pMOS pass 0’s poorly
- Transmission gate is for passing signal
 - Pass both 0 and 1 well
- When EN = 1, the switch is ON:
 - \(\overline{EN} = 0 \) and A is connected to B
- When EN = 0, the switch is OFF:
 - A is not connected to B
Psuedo-nMOS

- Replace pull-up network with weak pMOS transistor that is always on
 - pMOS gate tied to ground
- pMOS transistor: pulls output HIGH only when nMOS network not pulling it LOW
Psuedo-nMOS Example: NOR4

- How many transistors needed?
Psuedo-nMOS Example: NOR4

- How many transistors needed?
- Only 5 since a single pMOS is used
Gordon Moore, 1929-

• Cofounded Intel in 1968 with Robert Noyce.

• Moore’s Law: number of transistors on a computer chip doubles every year (observed in 1965)
 • Since 1975, transistor counts have doubled every two years.
Moore’s Law

- Transistor count doubles every 2 years
“If the automobile had followed the same development cycle as the computer, a Rolls-Royce would today cost $100, get one million miles to the gallon, and explode once a year . . .”

– Robert Cringley
Power Consumption

- Power = Energy consumed per unit time

- Two types of power
 - Dynamic power consumption
 - Static power consumption
Dynamic Power Consumption

- Power to charge transistor gate capacitances
 - Energy required to charge a capacitance, C, to V_{DD} is CV_{DD}^2
 - Circuit running at frequency f: transistors switch (from 1 to 0 or vice versa) at that frequency
 - Capacitor is charged $f/2$ times per second (discharging from 1 to 0 is free)

- Dynamic power consumption
 $$P_{\text{dynamic}} = \frac{1}{2} CV_{DD}^2 f$$
Static Power Consumption

• Power consumed when no gates are switching

• Caused by the quiescent supply current, I_{DD} (also called the leakage current)

• Static power consumption

\[P_{\text{static}} = I_{DD} V_{DD} \]
Power Consumption Example

- Estimate the power consumption of a wireless handheld computer
 - $V_{DD} = 1.2 \text{ V}$
 - $C = 20 \text{ nF}$
 - $f = 1 \text{ GHz}$
 - $I_{DD} = 20 \text{ mA}$

- Total power is sum of dynamic and static
Power Consumption Example

- Estimate the power consumption of a wireless handheld computer
 - $V_{DD} = 1.2 \text{ V}$
 - $C = 20 \text{ nF}$
 - $f = 1 \text{ GHz}$
 - $I_{DD} = 20 \text{ mA}$

- Total power is sum of dynamic and static

$$P = \frac{1}{2} CV_{DD}^2 f + I_{DD} V_{DD}$$

$$= \frac{1}{2} \left(20 \text{ nF}\right)(1.2)^2(1 \text{ GHz})$$

$$+ (20 \text{ mA})(1.2)$$

$$= (14.4 + 0.024) \text{ W}$$

$$= 14.4 \text{ W}$$
Binary Codes

Another way of representing decimal numbers

Example binary codes:

- Weighted codes
 - Binary Coded Decimal (BCD) (8-4-2-1 code)
 - 6-3-1-1 code
 - 8-4-2-1 code (simple binary)
- Gray codes
- Excess-3 code
- 2-out-of-5 code
Binary Codes

Each code combination represents a **single decimal digit**.
ASCII Code

<table>
<thead>
<tr>
<th>Character</th>
<th>ASCII Code</th>
<th>Character</th>
<th>ASCII Code</th>
<th>Character</th>
<th>ASCII Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>space</td>
<td>0 1 0 0 0 0 0</td>
<td>@</td>
<td>1 0 0 0 0 0 0</td>
<td>,</td>
<td>1 1 0 0 0 0 0</td>
</tr>
<tr>
<td>!</td>
<td>0 1 0 0 0 0 1</td>
<td>A</td>
<td>1 0 0 0 0 0 1</td>
<td>a</td>
<td>1 1 0 0 0 0 1</td>
</tr>
<tr>
<td>“</td>
<td>0 1 0 0 0 1 1</td>
<td>B</td>
<td>1 0 0 0 0 1 1</td>
<td>b</td>
<td>1 1 0 0 0 1 1</td>
</tr>
<tr>
<td>#</td>
<td>0 1 0 0 1 0 1</td>
<td>C</td>
<td>1 0 0 0 1 0 1</td>
<td>c</td>
<td>1 1 0 0 1 0 1</td>
</tr>
<tr>
<td>$</td>
<td>0 1 0 0 1 1 1</td>
<td>D</td>
<td>1 0 0 0 1 1 1</td>
<td>d</td>
<td>1 1 0 0 1 1 1</td>
</tr>
<tr>
<td>%</td>
<td>0 1 0 1 0 0 1</td>
<td>E</td>
<td>1 0 0 0 1 0 1</td>
<td>e</td>
<td>1 1 0 0 1 0 1</td>
</tr>
<tr>
<td>&</td>
<td>0 1 0 1 0 1 1</td>
<td>F</td>
<td>1 0 0 0 1 1 1</td>
<td>f</td>
<td>1 1 0 0 1 1 1</td>
</tr>
<tr>
<td>(</td>
<td>0 1 0 1 0 0 1</td>
<td>G</td>
<td>1 0 0 0 0 0 1</td>
<td>g</td>
<td>1 1 0 0 1 0 1</td>
</tr>
<tr>
<td>)</td>
<td>0 1 0 1 0 0 0</td>
<td>H</td>
<td>1 0 0 0 1 0 0</td>
<td>h</td>
<td>1 1 0 1 0 0 0</td>
</tr>
<tr>
<td>+</td>
<td>0 1 0 1 0 0 1</td>
<td>I</td>
<td>1 0 0 0 0 1 1</td>
<td>i</td>
<td>1 1 0 1 0 0 1</td>
</tr>
<tr>
<td>,</td>
<td>0 1 0 1 1 0 0</td>
<td>J</td>
<td>1 0 0 1 0 0 0</td>
<td>j</td>
<td>1 1 0 1 0 1 0</td>
</tr>
<tr>
<td>-</td>
<td>0 1 0 1 1 0 1</td>
<td>K</td>
<td>1 0 0 1 0 1 1</td>
<td>k</td>
<td>1 1 0 1 1 0 1</td>
</tr>
<tr>
<td>.</td>
<td>0 1 0 1 0 1 1</td>
<td>L</td>
<td>1 0 0 1 1 0 0</td>
<td>l</td>
<td>1 1 0 1 1 0 0</td>
</tr>
<tr>
<td>/</td>
<td>0 1 0 1 1 1 0</td>
<td>M</td>
<td>1 0 0 1 1 1 0</td>
<td>m</td>
<td>1 1 0 1 1 1 0</td>
</tr>
<tr>
<td>0</td>
<td>0 1 1 0 0 0 0</td>
<td>N</td>
<td>1 0 0 1 1 1 1</td>
<td>n</td>
<td>1 1 0 1 1 1 1</td>
</tr>
<tr>
<td>1</td>
<td>0 1 1 0 0 0 1</td>
<td>O</td>
<td>1 0 1 0 0 0 0</td>
<td>o</td>
<td>1 1 1 0 0 0 0</td>
</tr>
<tr>
<td>2</td>
<td>0 1 1 0 0 1 0</td>
<td>P</td>
<td>1 0 1 0 0 0 1</td>
<td>p</td>
<td>1 1 1 0 0 0 1</td>
</tr>
<tr>
<td>3</td>
<td>0 1 1 0 1 0 1</td>
<td>Q</td>
<td>1 0 1 0 1 0 1</td>
<td>q</td>
<td>1 1 1 0 1 0 1</td>
</tr>
<tr>
<td>4</td>
<td>0 1 1 0 1 1 0</td>
<td>R</td>
<td>1 0 1 0 1 1 0</td>
<td>r</td>
<td>1 1 1 0 1 1 0</td>
</tr>
<tr>
<td>5</td>
<td>0 1 1 1 0 1 0</td>
<td>S</td>
<td>1 0 1 1 0 0 1</td>
<td>s</td>
<td>1 1 1 1 0 0 1</td>
</tr>
<tr>
<td>6</td>
<td>0 1 1 1 1 0 1</td>
<td>T</td>
<td>1 0 1 1 0 1 1</td>
<td>t</td>
<td>1 1 1 1 0 1 0</td>
</tr>
<tr>
<td>7</td>
<td>0 1 1 1 1 1 0</td>
<td>U</td>
<td>1 0 1 1 1 0 0</td>
<td>u</td>
<td>1 1 1 1 0 1 1</td>
</tr>
<tr>
<td>8</td>
<td>0 1 1 1 1 0 0</td>
<td>V</td>
<td>1 0 1 1 1 0 1</td>
<td>v</td>
<td>1 1 1 1 1 0 0</td>
</tr>
<tr>
<td>9</td>
<td>0 1 1 1 0 1 0</td>
<td>W</td>
<td>1 0 1 1 1 1 0</td>
<td>w</td>
<td>1 1 1 1 1 1 0</td>
</tr>
<tr>
<td>:</td>
<td>0 1 1 1 1 0 1</td>
<td>X</td>
<td>1 0 1 1 1 1 0</td>
<td>x</td>
<td>1 1 1 1 1 1 0</td>
</tr>
<tr>
<td>;</td>
<td>0 1 1 1 1 0 0</td>
<td>Y</td>
<td>1 0 1 1 1 1 0</td>
<td>y</td>
<td>1 1 1 1 1 1 0</td>
</tr>
<tr>
<td><</td>
<td>0 1 1 1 1 0 1</td>
<td>Z</td>
<td>1 0 1 1 1 1 0</td>
<td>z</td>
<td>1 1 1 1 1 1 0</td>
</tr>
<tr>
<td>=</td>
<td>0 1 1 1 1 1 0</td>
<td>[</td>
<td>1 0 1 1 1 1 0</td>
<td>[</td>
<td>1 1 1 1 1 1 0</td>
</tr>
<tr>
<td>></td>
<td>0 1 1 1 1 1 1</td>
<td>\</td>
<td>1 0 1 1 1 1 0</td>
<td>\</td>
<td>1 1 1 1 1 1 0</td>
</tr>
<tr>
<td>?</td>
<td>0 1 1 1 1 1 0</td>
<td>^</td>
<td>1 0 1 1 1 1 0</td>
<td>^</td>
<td>1 1 1 1 1 1 0</td>
</tr>
</tbody>
</table>

Table 1-3 ASCII Code

© Cengage Learning 2014
Weighted Codes

- Weighted codes: each bit position has a given weight
 - Binary Coded Decimal (BCD) (8-4-2-1 code)
 - Example: $726_{10} = 0111\ 0010\ 0110_{BCD}$
 - 6-3-1-1 code
 - Example: 1001 (6-3-1-1 code) = $1 \times 6 + 0 \times 3 + 0 \times 1 + 1 \times 1$
 - Example: $726_{10} = 1001\ 0011\ 1000_{6311}$

- BCD numbers are used to represent fractional numbers exactly (vs. floating point numbers – which can’t - see Chapter 5)
Weighted Codes

<table>
<thead>
<tr>
<th>Decimal #</th>
<th>8-4-2-1 (BCD)</th>
<th>6-3-1-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>0011</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>0100</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>0101</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>0111</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>1000</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>1001</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>1011</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>1100</td>
</tr>
</tbody>
</table>

- **BCD Example:**
 \[726_{10} = 0111 \ 0010 \ 0110_{\text{BCD}}\]

- **6-3-1-1 code Example:**
 \[726_{10} = 1001 \ 0011 \ 1000_{6311}\]
Excess-3 Code

- Add 3 to number, then represent in binary
 - Example: $5_{10} = 5 + 3 = 8 = 1000_2$
- Also called a biased number
- Excess-3 codes (also called XS-3) were used in the 1970’s to ease arithmetic

<table>
<thead>
<tr>
<th>Decimal #</th>
<th>Excess-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0011</td>
</tr>
<tr>
<td>1</td>
<td>0100</td>
</tr>
<tr>
<td>2</td>
<td>0101</td>
</tr>
<tr>
<td>3</td>
<td>0110</td>
</tr>
<tr>
<td>4</td>
<td>0111</td>
</tr>
<tr>
<td>5</td>
<td>1000</td>
</tr>
<tr>
<td>6</td>
<td>1001</td>
</tr>
<tr>
<td>7</td>
<td>1010</td>
</tr>
<tr>
<td>8</td>
<td>1011</td>
</tr>
<tr>
<td>9</td>
<td>1100</td>
</tr>
</tbody>
</table>

- Excess-3 Example:
 $7_{10} = \text{1010 0101 1001}_\text{xs3}$
2-out-of-5 Code

• 2 out of the 5 bits are 1

• Used for error detection:
 • If more or less than 2 of 5 bits are 1, error

<table>
<thead>
<tr>
<th>Decimal #</th>
<th>2-out-of-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00011</td>
</tr>
<tr>
<td>1</td>
<td>00101</td>
</tr>
<tr>
<td>2</td>
<td>00110</td>
</tr>
<tr>
<td>3</td>
<td>01001</td>
</tr>
<tr>
<td>4</td>
<td>01010</td>
</tr>
<tr>
<td>5</td>
<td>01100</td>
</tr>
<tr>
<td>6</td>
<td>10001</td>
</tr>
<tr>
<td>7</td>
<td>10010</td>
</tr>
<tr>
<td>8</td>
<td>10100</td>
</tr>
<tr>
<td>9</td>
<td>11000</td>
</tr>
</tbody>
</table>
Gray Codes

- Next number differs in only one bit position
 - **Example**: 000, 001, 011, 010, 110, 111, 101, 100

- **Example use**: Analog-to-Digital (A/D) converters. Changing 2 bits at a time (i.e., 011 → 100) could cause large inaccuracies.

<table>
<thead>
<tr>
<th>Decimal #</th>
<th>Gray</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0011</td>
</tr>
<tr>
<td>3</td>
<td>0010</td>
</tr>
<tr>
<td>4</td>
<td>0110</td>
</tr>
<tr>
<td>5</td>
<td>1110</td>
</tr>
<tr>
<td>6</td>
<td>1010</td>
</tr>
<tr>
<td>7</td>
<td>1011</td>
</tr>
<tr>
<td>8</td>
<td>1001</td>
</tr>
<tr>
<td>9</td>
<td>1000</td>
</tr>
</tbody>
</table>