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Background: Digital Logic Design

* How have digital devices changed the world?
* How have digital devices changed your life?
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Background

* Digital Devices have revolutionized our world
* Internet, cell phones, rapid advances in medicine, etc.

e The semiconductor industry has grown from $21
billion in 1985 to over $300 billion in 2015
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The Game Plan

* Purpose of course:
* Learn the principles of digital design

e Learn to systematically debug increasingly
complex designs




m Chapter 1: Topics

O‘ * The Art of Managing Complexity
O * The Digital Abstraction

' ]
— Nurr.mlc?er Systems
O e Addition

l
e

* Signed Numbers

Wy
N . Logic Gates

§: * Logic Levels
O -+ CMOS Transistors

\
Q2 . power Consumption
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Binary Codes




The Art of Managing Complexity

NE

e Abstraction

) * Discipline

b=~ « The Three —y’s
0 * Hierarchy
< * Modularity
W .

N * Regularity
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Abstraction

.+ What s abstraction? Application  [>"ne1lo] |\roorams
| Software |world!”
Osperating @ device drivers
s . ystems
| e Hiding details when : o
. . NN | nStructions
| they are not important A e | registers
g Micro- <> datapaths
| 3 architecture |:|<—>|:| controllers
:Ué; Logic ?ndedniz)s;ies
° I 3 -
\ Electronic computer g gl opy. |0
. Circuit NOT gat
abstraction ! it e
| . ] Analog gli}O amplifiers
‘ e Different levels with Circuits filters
1 different building blocks Hfogficas @ ransisors
‘ Physics % electrons
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* Intentionally restrict design choices
« Example: Digital discipline
— Discrete voltages (0 V, 5 V) instead of continuous
(0V -5V)

— Simpler to design than analog circuits — can build
more sophisticated systems

— Digital systems replacing analog predecessors:

* |.e., digital cameras, digital television, cell phones,
CDs
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The Three —y’s

* Hierarchy
A system divided into modules and submodules
E

E

ON

QO Modularity
Qo

« Having well-defined functions and interfaces

Ly

N

§: * Regularity

O' « Encouraging uniformity, so modules can be easily
o reused
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* Hierarchy

* Three main modules:
Lock, stock, and barrel

e Submodules of lock:
Hammer, flint, frizzen,
etc.
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Example: Flintlock Rifle
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 Modularity

* Function of stock:
mount barrel and lock

* Interface of stock:
length and location of
mounting pins

ZEROTO O

* Regularity

M

* Interchangeable parts

FRO
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The Art of Managing Complexity

NE

e Abstraction

) * Discipline

b=~ « The Three —y’s
0 * Hierarchy
< * Modularity
W .

N * Regularity
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The Digital Abstraction

* Most physical variables are continuous
* Voltage on a wire (1.33V,9V, 12.2 V)

* Frequency of an oscillation (60 Hz, 33.3 Hz, 44.1
kHz)

* Position of mass (0.25 m, 3.2 m)

* Digital abstraction considers discrete subset
of values
*0V,5V
.« “0” “1”




* Desighed by Charles
Babbage from 1834 —
1871

* Considered to be the
first digital computer

Built from mechanical
gears, where each gear
represented a discrete
value (0-9)

* Babbage died before it
was finished
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The Analytical Engine

Chapter 1 <14>

PP

ELSEVIER



FROM ZERO TO ONE

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <15>

Digital Discipline: Binary Values

e Two discrete values

e 1andO
* 1=TRUE =HIGH =0ON
* 0 =FALSE = LOW = OFF
* How to represent 1 and O
* Voltage levels, rotating gears, fluid levels, etc.

* Digital circuits use voltage levels to represent
1andO
* Bit = binary digit
* Represents the status of a digital signal (2 values)
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* Easier to design

* Fast

* Can overcome noise

* Error detection/correction
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George Boole, 1815-1864

* Born to working class parents

* Taught himself mathematics
and joined the faculty of
Queen’s College in Ireland

* Wrote An Investigation of the
Laws of Thought (1854)

* Introduced binary variables

* Introduced the three
fundamental logic operations:
AND, OR, and NOT

FROM ZERO TO ONE

:‘.‘\ ..")";x
AT 1’
QDR

W4

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 1 <17> ESER



NE

ZERO TO O

FROM

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 1 <18>

Number Systems

* Decimal
* Base 10
* Binary
* Base 2

e Hexadecimal
e Base 16
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Decimal Numbers

e Base 10 (our everyday number system)

uwin|o) s,000T
uwn|o) s,00T
uwn|o) s,01
uwn|od s,

5374, =5x10°+3x10%+7 x 10! + 4 x 10°
/‘\

Five Three Seven Four
Thousand Hundred Tens Ones

Base 10

s :
N S
S
>
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Binary Numbers

e Base 2 (computer number system)

uwn|o) s,8
uwn|o) s
uwn(o) s,z
uwn|o) s,T

1101, =1x234+1x224+0x21+1x2°

? One One Zero One
Eight Four Two One

Base 2
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FROM ZERO TO ONE

20 =1 .
21=12 .
22 = 4 .
23=8 .
24 =16 ;
25 = 32 .
26 = 64 .
27 =128 .

28 =256
29 =512
210 =1024
211 = 2048
212 = 4096
213 =8192
214 =16384
21> = 32768

Handy to memorize up to 210
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e Bits

e Bytes = 8 bits
* Nibble = 4 bits

e Words = 32 bits

* Hex digit to
represent nibble
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Bits, Bytes, Nibbles ...

10010110

most least
significant significant
bit bit
byte

10010110

nlbble

CEBF9AD7

most least
significant significant
byte byte
Chapter 1 <23> ELSEVIER




Decimal to Binary Conversion

O' e Two Methods:

@

l=~- « Method 1: Find largest power of 2 that fits,
@ subtract and repeat

m|

~ - |
N+ Method 2: Repeatedly divide by 2, remainder
§; goes in next most significant bit

8
o
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D2B: Method 1

* Find largest power of 2 that fits, subtract,
repeat

NE
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D2B: Method 1

* Find largest power of 2 that fits, subtract,
repeat

534, 32x1
53-32=21 16x1
21-16=5  4x1
5-4 =1 1x1

= 110101,

FROM ZERO TO ONE
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D2B: Method 2

* Repeatedly divide by 2, remainder goes in
next most significant bit

NE

5315 =

OM ZERO TO O
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D2B: Method 2

* Repeatedly divide by 2, remainder goes in
next most significant bit

53,,= 53/2=26R1 LSB
26/2 =13 RO
13/2=6 R1
6/2 =3 RO
32 =1 R1
1/2 =0 R1 MSB

= 110101,

FROM ZERO TO ONE
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Number Conversion

NE

* Binary to decimal conversion
* Convert 10011, to decimal

16 X1+8X0+4X0+2X1+1X1=19

* Decimal to binary conversion
* Convert 474, to binary

32X1+16x0+8x1+4x1+2%Xx1+1%x1=101111,

OM ZERO TO O
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D2B Example

NE

» Convert 75,4 to binary

EROTO O
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D2B Example

W
< .
O ° Convert 754, to binary
O 75,=64 +8+2+1=1001011,
Q- Or 75/2 =37 Rl
s 37/2 =18 Rl
H; 18/2 =9 RO
| 9/2 =4 Rl
E; 4/2 =2 RO
o 2/2 =1 RO

1/2 =0 R1

FR
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Binary Values and Range

* N-digit decimal number

NE

* How many values?

* Range?

 Example:
3-digit decimal number

* Possible values

OM ZERO TO O

* Range
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Binary Values and Range

* N-digit decimal number

* How many values?
« 10V

* Range?
« [0,10N — 1]

 Example:
3-digit decimal number

* Possible values

¢ 10 = 1000
* Range
* [0,999]
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Binary Values and Range

e N-bit binary number

* How many values?

* Range?

 Example:
3-bit binary number

* Possible values

* Range
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Binary Values and Range

e N-bit binary number

* How many values?
o« 2N

* Range?
. [0,2V —1]

 Example:
3-bit binary number
* Possible values
- 23=38
* Range
* [0,7] =[000,,111,]




NE

0 * N-digit decimal number
* How many values?

o -w

Hh. * Range?

0 . [0,10"Y — 1]

$|  Example:

N 3-digit decimal number

* Possible values

M

« 103 = 1000
0  Range
. [0,999]

FR
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Binary Values and Range

* N-bit binary number
* How many values?
e 2N
 Range?
. [0,2V —1]

 Example:
3-bit binary number
* Possible values
- 23=8
* Range

° [O, 7] — [0002, 1112]

Chapter 1 <36>
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Hexadecimal Numbers

NE

* Base 16 number system

e Shorthand for binary

* Four binary digits (4-bit binary number) is a
single hex digit
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Hexadecimal Numbers

NE

Hex Digit Decimal Equivalent Binary Equivalent

Qo o ;
1 1

Qo z z
M, 3 3
4 4

Qo : :
m' 6 6
m' 7 7
| 8 8
N 9 9
- A 10
E: B 1
0 C 12
m. D 13
- E 14
ul F 15
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0000

Hexadecimal Numbers

Hex Digit Decimal Equivalent Binary Equivalent

0001

0010

0011

0100

0101

0110

0111

1000

ZERO TO O

1001

=
o

1010

M

|
[EEN

1011

R
N

1100

0,

=
w

1101

=
N

1110

nmimlo|lo|lw|>|e|lo|(vN|lo|lu|lr|lw|v|k|o

FR
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Hexadecimal to Binary Conversion

NE

* Hexadecimal to binary conversion:
* Convert 4AF ¢ (also written Ox4AF) to binary

e Hexadecimal to decimal conversion:

e Convert Ox4AF to decimal

OM ZERO TO O
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Hexadecimal to Binary Conversion

O' * Hexadecimal to binary conversion:

0| * Convert 4AF ¢ (also written Ox4AF) to binary
H‘I * Ox4AF =010010101111,

RO

e Hexadecimal to decimal conversion:

"Nu e Convert Ox4AF to decimal

§, e 4x16%+10x 161+ 15 x 16° = 11994,
Qo

L

A St Ny e
N =
G ;
3 HAg’
%)
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Number Systems

NE

o Popular

0 * Decimal Base 10
| * Binary Base 2
0 * Hexadecimal Base 16
<

'-NLI: * Others

E: * QOctal Base 8
0 * Any other base

FR
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Octal Numbers

NE

Octal Digit Decimal Equivalent

* Same as hex with one less binary digit

Binary Equivalent

000

001

010

011

ZERO TO O

100

101

110

N oo~ |lWIN|EFHL]|O

0
1
2
3
4
5
6
7

M

111

FRO
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Number Systems

* |n general, an N-digit number
fay_1ay_o ...aiay} of base R in decimal
equals
e ay_1R" "' +ay_,RYN"? + -+ aR' + agR’

* Example: 4-digit {5173} of base 8 (octal)




m Number Systems
<

O' * |n general, an N-digit number
fay_1ay_o ...aiay} of base R in decimal

O equals

O| ¢ aN_lRN_l + aN_zRN_z + + alRl + aoRO

o

'-Nl.l * Example: 4-digit {5173} of base 8 (octal)
§' « 5x83+1x82+7x8!+3x8°=12683,,
2
e
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Decimal to Octal Conversion

NE

e Remember two methods for D2B conversion

* 1: remove largest multiple; 2: repeated divide

* Convert 294, to octal

OM ZERO TO O

FR

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 1 <46>



Decimal to Octal Conversion

NE

e Remember two methods for D2B conversion

* 1: remove largest multiple; 2: repeated divide
* Convert 294, to octal
* Method 2

29/8 =3 R5 Isb
3/8 =0 R3 msb

2910 —_ 358

OM ZERO TO O

FR
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- FROM ZERO TO ONE

Decimal to Octal Conversion

e Remember two methods for D2B conversion

* 1: remove largest multiple; 2: repeated divide
* Convert 294, to octal
* Method 1

29 8X3=24
29-24=5

29,0 =24 +5=3x8"+5x8% =354
* Or (better scalability)
2910 =16+8+4+1=11101, = 355 § }%
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Octal to Decimal Conversion

NE

* Convert 1634 to decimal

OM ZERO TO O
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Octal to Decimal Conversion

NE

ZERO TO O

* Convert 1634 to decimal

¢+ 163, =1x82+6x 8! +3
+ 1635 = 64 + 48 + 3
¢ 1638=11510

FROM
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Recap: Binary and Hex Numbers

* Example 1: Convert 83, to hex

* Example 2: Convert 01101011, to hex and decimal

 Example 3: Convert 0xCA3 to binary and decimal
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Recap: Binary and Hex Numbers

* Example 1: Convert 83, to hex
* 83,,=64+16+24+1=1010011,
+ 1010011, = 1010011, = 534

* Example 2: Convert 01101011, to hex and decimal
« 01101011, = 0110 1011, = 6By,
e 0X6B=6 x 161 + 11 x16° =96 + 11 = 107

 Example 3: Convert 0xCA3 to binary and decimal
* OxCA3=110010100011,
* O0XCA3 =12 x 16* + 10 X 16" + 3 X 16° = 3235, g0,

.
o
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Large Powers of Two

e 210=1 kilo ~ 1000 (1024)

e 220=1 mega -1 million (1,048,576)

e 230=1giga =1 billion(1,073,741,824)

e 20=1tera =~1trillion(1,099,511,627,776)

FROM ZERO TO ONE
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Large Powers of Two: Abbreviations

!-Zl.m

0 e 210=1 kilo = 1000 (1024)

0 for example: 1 kB =1024 Bytes

b~ 1 kb = 1024 bits

Q

'E: e 220=1mega -1 million (1,048,576)
Nl for example: 1 MiB, 1 Mib (1 megabit)

) °*2¥=1giga =1billion(1,073,741,824)
o' for example: 1 GiB, 1 Gib

e
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Estimating Powers of Two

* What is the value of 224?

* How many values can a 32-bit variable
represent?




Estimating Powers of Two

* What is the value of 224?

e 24 x 220 = 16 million

NE

* How many values can a 32-bit variable
represent?

e 22 x 230 = 4 billion

OM ZERO TO O
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Binary Codes

Another way of representing decimal numbers in
binary

Example binary codes:

* Weighted codes
* Binary Coded Decimal (BCD) (8-4-2-1 code)
* 6-3-1-1 code
e 8-4-2-1 code (simple binary)

* Gray codes

e Excess-3 code

e 2-out-of-5 code

FROM ZERO TO ONE
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Binary Codes

Decimal # | 8-4-2-1 Gray
(BCD)

0 0000 0000 0011 00011 0000
| 1 0001 0001 0100 00101 0001
| 2 0010 0011 0101 00110 0011
l 3 0011 0100 0110 01001 0010
| 4 0100 0101 0111 01010 0110
5 0101 0111 1000 01100 1110
\ 6 0110 1000 1001 10001 1010
‘ 7 0111 1001 1010 10010 1011
: 8 1000 1011 1011 10100 1001

9 1001 1100 1100 11000 1000

FROM ZERO TO ONE

Each code combination represents a single decimal digit.

S ‘\.-": 2
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Gray Codes

0
1
2

FROM ZERO TO ONE

© Digital Design and Computer Architecture, 2" Edition, 2012

0000
0001
0011
0010
0110
1110
1010
1011
1001
1000

* Next number differs in
only one bit position
 Example: 000, 001, 011,
010, 110, 111, 101, 100
* Example use: Analog-
to-Digital (A/D)
converters. Changing 2
bits at a time (i.e., 011
—>100) could cause
large inaccuracies.

* Will use in K-maps

Chapter 1 <60>



e« Decimal

3734
+ 5168

* Binary

ZERO TO ONE

1011
+ 0011

M

FRO
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e Decimal |
11 < carries

3734
+ 5168

8902

* Binary

ZERO TO ONE

1011
+ 0011

M

FRO
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!-Zl.ll
0 e Decimal |
11 < carries

@) 3734

- + 5168

0 8902

ﬁi * Binary _

Nl 11 <« carlries
| 1011

> + 0011

@ 1110

<

(N

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 1 <63>



Binary Addition Examples

 Add the following 4-bit
binary numbers 1001

+ (0101

 Add the following 4-bit
binary numbers 1011

+ 0110

FROM ZERO TO ONE
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Binary Addition Examples

 Add the following 4-bit 1
binary numbers 1001
+ 0101
1110

 Add the following 4-bit
binary numbers 1011

+ 0110

FROM ZERO TO ONE
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Binary Addition Examples

w
S  Add the following 4-bit 1
binary numbers 1001

E + 0101
| 1110

Q

< _ .

L)+ Add the following 4-bit 111

N binary numbers 1011

§ + 0110

@) 10001

E! Overflow!
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M overfow

O;  Digital systems operate on a fixed number of
bits

E'  Overflow: when result is too big to fit in the
Q).  available number of bits
% « See previous example of 11 + 6
|
N
Q
o

L,
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Signed Binary Numbers

 Sign/Magnitude Numbers
* Two’s Complement Numbers

FROM ZERO TO ONE
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FROM ZERO TO ONE
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Sign/Magnitude

1 sign bit, N-1 magnitude bits
 Sign bit is the most significant (left-most) bit

— Positive number: signbit=0 A - {aN_l, ay_,,+a,,a,, ao}
— Negative number: sign bit =1

A=(-1)* nfai 2
1=0

« Example, 4-bit sign/magnitude representations of + 6:

« Range of an N-bit sign/magnitude number:




FROM ZERO TO ONE
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Sign/Magnitude

1 sign bit, N-1 magnitude bits
 Sign bit is the most significant (left-most) bit

— Positive number: signbit=0 A - {aN_l, ay_,,+a,,a,, ao}
— Negative number: sign bit =1

A=(-1)* nfai 2
1=0

« Example, 4-bit sign/magnitude representations of + 6:
e +6=0110
e -6=1110

« Range of an N-bit sign/magnitude number:
o [-(2N-1-1), 2N-1-1]




Sign/Magnitude Numbers

 Problems:
 Addition doesn’t work, for example -6 + 6:

1110
+ 0110

* Two representations of 0 (x 0):
* (-0) =

FROM ZERO TO ONE
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Sign/Magnitude Numbers

 Problems:
 Addition doesn’t work, for example -6 + 6:

1110
+ 0110

10100 (wrong!)
* Two representations of 0 (x 0):
« (+0) = 0000
 (—0) = 1000

FROM ZERO TO ONE
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Two’s Complement Numbers

O' * Don’t have same problems as
sign/magnitude numbers:

el * Addition works
O‘ e Single representation for 0

. * Range of representable numbers not

o
v
N symmetric
§.
2
e

| * One extra negative number
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Two’s Complement Numbers

* msb has value of —2NV-1

A=a, (-2")+ niai 2!
1=0

* The most significant bit still indicates the sign
(1 = negative, 0 = positive)

» Range of an N-bit two’s comp number?

* Most positive 4-bit number?
* Most negative 4-bit number?

FROM ZERO TO ONE
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Two’s Complement Numbers

* msb has value of —2NV-1

A=a, (-2")+ niai 2!
1=0

* The most significant bit still indicates the sign
(1 = negative, 0 = positive)

» Range of an N-bit two’s comp number?
o [-(2FH), 2N - 1]

* Most positive 4-bit number? 0111

* Most negative 4-bit number? 1000

FROM ZERO TO ONE
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FROM ZERO TO ONE
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“Taking the Two’s Complement”

Flips the sign of a two’s complement
number

Method:

1. Invert the bits
2. Add1

Example: Flip the sign of 3,, = 0011,




“Taking the Two’s Complement”

* Flips the sign of a two’s complement
number

« Method:

1. Invert the bits
2. Add1

« Example: Flip the sign of 3,, = 0011,
1. 1100
2. + 1
1101 = -3,

OM ZERO TO ONE

FR
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FROM ZERO TO ONE
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Two’s Complement Examples

Take the two’s complement of 6,, = 0110,

What 1s the decimal value of the two’s
complement number 1001,?




OM ZERO TO ONE

FR
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Two’s Complement Examples

Take the two’s complement of 6,, = 0110,
1. 1001
2. + 1
1010, = -6,

What 1s the decimal value of the two’s

complement number 1001,?
1. 0110
2. + 1
0111, = 7,9, S0 1001, = -7,




FROM ZERO TO ONE
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Two’s Complement Addition

* Add 6 + (-6) using two’s complement
numbers

0110
+ 1010

* Add -2 + 3 using two’s complement numbers

1110
+ 0011




FROM ZERO TO ONE
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Two’s Complement Addition

Add 6 + (-6) using two’s complement
numbers 111

0110
+ 1010
10000

Add -2 + 3 using two’s complement numbers

1110
+ 0011




Two’s Complement Addition

* Add 6 + (-6) using two’s complement
numbers 111

Ly

<

q

EE' 0110
' + 1010

E% 10000

N

>

8

y

* Add -2 + 3 using two’s complement numbers

111
1110

70001 i
. {3}, ;
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Increasing Bit Width

NE

* Extend number from N to M bits (M > N) :
* Sign-extension
* Zero-extension

OM ZERO TO O

FR

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 1 <83>




my Sign-Extension
<

O' * Sign bit copied to msb’s
0 * Number value is same

Q- Example 1
| e 4-bit representation of 3 = 0011
| * 8-bit sign-extended value:

<

W

N

§l e Example 2
O' e 4-bit representation of -7 = 1001
' * 8-bit sign-extended value:

ol

N BN
% 3
A A

N l )'
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my Sign-Extension
<

O' * Sign bit copied to msb’s
0 * Number value is same

Q- Example 1
| e 4-bit representation of 3 = 0011
| * 8-bit sign-extended value: 00000011

2
N
N
§l e Example 2
O' e 4-bit representation of -7 = 1001
E - 8-bit sign-extended value: 11111001
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ero-Extension

e Zeros copied to msb’s

NE

* Value changes for negative numbers

OM ZERO TO O

e Example 1
i + 4-bit value = 0011,
| e 8-bit zero-extended value:
- * Example 2
| » 4-bit value = 1001

e 8-bit zero-extended value:

FR
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ZER NE

OM ZERO TO O

FR
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ero-Extension

e Zeros copied to msb’s
* Value changes for negative numbers

e Example 1
* 4-bit value = 0011,
* 8-bit zero-extended value: 00000011
e Example 2
* 4-bit value = 1001

e 8-bit zero-extended value: 00001001




WY zeobxtenson
<

O' e Zeros copied to msb’s
o * Value changes for negative numbers

Qo - Example 1
% * 4-bit value = 0011, = 3,,
N * 8-bit zero-extended value: 00000011 = 3,
§l e Example 2

O' e 4-bit value = 1001 =-7,,
E * 8-bit zero-extended value: 00001001 = 9,
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Number System Comparison

NE

Number System  Range
Unsigned 0, 2N-1]
Sign/Magnitude -(2N-1-1), 2N-1-1]

Two’s Complement -2N-1 2N-1.1]

For example, 4-bit representation:.

rr»~ 1~ 1 _ 1 T T 1T T T T T T T T 1 T T T T T T T 1
84 7 6 5 4 3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OM ZERO TO O

Unsigned 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 O111 Two's Complement
0000 . .
1111 1110 1101 1100 1011 1010 1001 1000 0001 0010 0011 0100 0101 0110 0111 Slgn/Magnltude

FR

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 1 <89>



my Logic Gates

O' * Perform logic functions:

0  inversion (NOT), AND, OR, NAND, NOR, etc.
\

o

* Single-input:
O| * NOT gate, buffer
2 . Two-input:
LN“ * AND, OR, XOR, NAND, NOR, XNOR
§' * Multiple-input

8
o
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NE

OM ZERO TO O

FR
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Single-Input Logic Gates

BUF
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NE

NOT

A

Al oy

1

Y =
AlY
0

1 0

OM ZERO TO O

FR

(invert value)

© Digital Design and Computer Architecture, 2™ Edition, 2012

Single-Input Logic Gates

e Bubble on wire indicates inversion

BUF
A{>Y
Y=A
AlY
0[O0
1 1

* Note: bar over variable indicates complement
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NE

AND

OM ZERO TO O

FR
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Two-Input Logic Gates

= O Oo|l>
—~ o Oo|
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NE

O AND

=
QO Y = AB

<

ml A BI|Y
N S
> Lo
o

FR
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Two-Input Logic Gates

OR
A
ol

Y=A+B
A BI|Y
0 0O
0 1|1
1 0|1
1 1|1
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NE

0 XOR NAND
OC 24 v &7 v
“~. BjD B
0 Y=A®B Y = AB
' A BI|Y A BI|Y
m- 0 0 0 0
L 0 1 0 1
10 1 0
NI 1 1 1 1

FROM

© Digital Design and Computer Architecture, 2™ Edition, 2012

Y=A+B
A BJl]Y
0 0

0 1

1 0

1 1

Chapter 1 <95>

More Two-lnput Logic Gates
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NE

ZERO TO O

Y=A®B Y = AB
' A BJ|Y A BJ|Y
' 0 0] 0 0 0| 1
| o 1|1 o 1|1
| 1 0|1 1 0| 1
1 1] o0 1 1] o0

FROM
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More Two-lnput Logic Gates

Y=A+B

A BJlY
0 0 1
0 1 0
1 0 0
1 1 0

Chapter 1 <96>

— o o <

' \an'

IR AR A
ELSEVIER



NE

@ NOR3
A
Q S
Ml
0 Y = A+B+C
& 4scl
L 0o 0 1
N 0 1 0
' 0o 1 1
EI 1 0 0
- 1 0 1
0 1010
1 1 1

FR
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Multiple-Input Logic Gates

AND3

A _
EDa

= ABC

el el e e NeoNe] B>

R, OORr Kk ool
R O OoORr O ol
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Multiple-Input Logic Gates

NE

OM ZERO TO O

el el e e NeoNe] B>

PP R PR OOOO|>
R R ook ool
R or or or ol
OO OO OO O RrIKL
PR OORr Kk ool
P O o or ol
e NeoNoNoNoNoNa) g

FR

e Multi-input XOR = Odd parity (#on inputs odd—>1)
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Logic Levels

* Discrete voltages represent 1 and O

NE

* For example:
0 =ground (GND) or O volts
* 1=V,,or5volts

e What about 4.99 volts? IsthataQOoral?
e What about 3.2 volts?

OM ZERO TO O

FR
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Logic Levels

* Must have range of voltages for 1 and 0

NE

* Different ranges for inputs and outputs to
allow for noise

OM ZERO TO O

FR
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* Anything that degrades the signal

e E.g., resistance, power supply noise, coupling to
neighboring wires, etc.

 Example: a gate (driver) outputs 5V but,
because of resistance in a long wire, receiver
gets4.5V
Noise

Driver \ Receiver

4| 5V 4.5v%

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <101>
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The Static Discipline

* With logically valid inputs, every circuit
element must produce logically valid outputs

NE

e Use limited ranges of voltages to represent
discrete values

OM ZERO TO O

FR
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M ZER NE

OM ZERO TO O

FR
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Real Logic Levels

Driver Receiver

— >

* Want driver to output “clean” high/low and
receiver to handle noisy high/low




Real Logic Levels

Output Range

GND

* Want driver to output “clean” high/
receiver to handle noisy high/low

2 Driver Receiver
®’ - ~
O' Output Characteristics Input Characteristics
h ____________ DD
Logic High

O Output Range

| Y,
m OH
BN
N y
§ Logic Low
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Logic High
Input Range

Logic Low
Input Range




Real Logic Levels

NE

: Driver Receiver
0 Output Characteristics Input Characteristics
k DD
' Logic High A [[ETTTETEmmrm [T A o
Output Range Logic High
V Input Range
. OH
m' Forbidden
“-II Zone
_ v Logic Low
Logic Low Input Range

Output Range

M

GND

NMy = Vo = Vi

FRO

NM_ =V, =V
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ml Voo Scaling

%' * In 1970’s and 1980’s, V=5V
* V, has dropped

E‘ «33V,25V,1.8V, 1.5V, 1.2V, 1.0V, ...
8' * Avoid frying tiny transistors

W-LII e Save power

N

§: e Be careful connecting chips with different

@ supply voltages

n
o'  Easy to fry if not careful
Ll
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m Logic Family Examples

S

\
0 Logic Family |Vp V. Vi VoL | Von

l

TTL 5(4.75-5.25) (08 |20 |04 |24

—~ ( )
o) |cmos 5 (4.5 - 6) 135 |3.15 |0.33 |3.84
& v 33(3-36) |08 |20 |04 |24
W
NI [Lvemos  [33(3-36) |09 |18 036 |27

>
8
o
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Wy ransistors

O' * Logic gates built from transistors
0 * Simple model: 3-ported voltage-controlled
e

switch
O| * 2 ports connected depending on voltage of 3rd
oz * d and s are connected (ON) when gis 1
Wy
N g=0 g=1
§: d d d
@) g %i 4?\ OFF i ON
< S S s
e

--;k'}u.‘.'.;._»-.f'\_"_' '::‘l,:
R 4
G ;
3 W Ae”
Sl
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Robert Noyce, 1927-1990

* Nicknamed “Mayor of
Silicon Valley”

e Cofounded Fairchild
Semiconductor 1n 1957

« Cofounded Intel In
1968

» Co-invented the
Integrated circuit

FROM ZERO TO ONE
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Silicon

* Transistors built from silicon, a semiconductor
* Pure silicon is a poor conductor (no free charges)

* Doped silicon is a good conductor (free charges)
* n-type (free negative charges, electrons)
* p-type (free positive charges, holes)

Free electron Free hole
Si Si Si —Si—Si_lSi— —Si—Si+ -- Si —
Si Si Si Si AS— Si Si B Si
Si Si Si Si Si Si Si Si Si

FROM ZERO TO ONE

Silicon Lattice n-Type p-Type
P
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w MOS Transistors

O‘ * Metal oxide silicon (MOS) transistors:
0 * Polysilicon (used to be metal) gate

l
o~ e Oxide (silicon dioxide) insulator

O‘ * Doped silicon
E | source gate drain

N
=

O gate

\
o' L

| source 7 L drain
Iul nMOS
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e Gate=0

* OFF (no connection
between source and

drain)
source drain
O gate O

Diode connection from p to n doped area
—> current cannot travel from n>p

FROM ZERO TO ONE

© Digital Design and Computer Architecture, 2" Edition, 2012

NMOS Transistors

e Gate=1

* ON (channel between
source and drain)

source gate drain

O TVDD O

Chapter 1 <112>



PMQOS Transistors

NE

)  pMOS transistor is opposite of nMOS
0 * ON when Gate=0
I~ e OFF when Gate =1
0 source gate drain
| Polysilicon O O
< Sio,
g T
m: No.te pubble on gate gate
u' to indicate on when low Source JJ_LL drain
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NE

d

NMOS g_4E

S

S

pMOS g_qE

d

OM ZERO TO O

FR
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g=0

d
%iOFF

S

—0

ON

O—04¢—0— (n

Chapter 1 <114>

Transistor Function

* Voltage controlled switch



Transistor Composition

O‘ e nMOS: pass good 0’s * Build logic gates from
* Connect source to GND composition
0‘ e “Pull down” transistor e CMOS = complementary

e~ MOS

-
e )
8‘ * pMOS: pass good 1’s MOS
I-
W-UI  Connect source to VDD Lo
N\ e “Pull up” transistor inputs | - J
| 7 — output

S —=
I nMOS

Ol pull-down

| network
ml N /
ol v
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NE

e Pull-up pMOS network
connects to /pp

e Pull-down nMQOS
network connects to
GND

ZEROTO O

e Use series and parallel
connections to
implement gate logic

FROM

© Digital Design and Computer Architecture, 2" Edition, 2012

CMOS Gate Structure

—

-

Inputs

\_

pMOS

pull-up
network

~

)

/

o

nMOS
pull-down
network

~

/

%

Chapter 1 <116>
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CMOS Gates: NOT Gate

L GND

FROM ZERO TO ONE
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0 ON

OFF

CMOS Gates: NOT Gate

GND

1 OFF

ON

FROM ZERO TO ONE
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CMOS Gates: NAND Gate

NE

OM ZERO TO O

FR
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NE

CMOS Gates: NAND Gate

Q
=
QO
<
Ly
N = v
EZ 00 1
0} o/1|oN |oFF |oFF [ON |1
o 1/0|oFF |oN |oON |oOFF |1
ke 1|1 |OFF |OFF |ON [ON |0
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CMOS Gates: NOR Gate

NE

* How can you build three input (4, B, C)NOR
gate?

ZERO TO O

FROM
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NE

gate?

A

CMOS Gates: NOR Gate

* How can you build three input (4, B, C)NOR

1

Q

Only high output when all

B

] three pMOS in series are
O “on” and create a path
] from output to Iy

Q

O

OM ZERO TO O

4 Y

FR
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CMOS Gates: AND Gate

NE

* How can you build 2 input AND gate?

OM ZERO TO O

FR
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CMOS Gates: AND Gate

NE

* How can you build 2 input AND gate?

A —
B_ )(>—| >O0—Y

ZERO TO O

FROM
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NE

OM ZERO TO O

FR
<]_I
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CMOS Gates: AND Gate

* How can you build 2 input AND gate?

A —
B_ )O—| >0—Y

V

DD Note: AND requires 2
] more gates than NAND.

%1‘ EPZ—O P1 P1 Inverted logic is more
j, H_.[ } Y efficient implementation.

N1
A N1 !
B N2 GND

Chapter 1 <125>
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FROM ZERO TO ONE

Transmission Gates

* nMOS pass 1’'s poorly, pMOS pass 0’s poorly

* Transmission gate is for passing signal
* Pass both 0 and 1 well

e When EN =1, the switch is ON: EN
« EN = 0andAisconnected to B 1

e When EN =0, the switch is OFF: A_T_ B
* Ais not connected to B EN




Psuedo-nMOQOS

* Replace pull-up network with weak pMOS
transistor that is always on

* pMOS gate tied to ground

e pMOS transistor: pulls output HIGH only
when nMOS network not pulling it LOW

FROM ZERO TO ONE

-+
|
\ v
Y
: 4 N
mpu/ts nMOS
| 7 pull-down
network
\_ €7 J
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Psuedo-nMOS Example: NOR4

NE

* How many transistors needed?

OM ZERO TO O

FR
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FROM ZERO TO ONE

Psuedo-nMOS Example: NOR4

* How many transistors needed?
* Only 5 since a single pMOS is used

A
AAEB%EC%ED%E

NV

Y
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e Cofounded Intel in
1968 with Robert
Noyce.

 Moore’s Law: number
of transistors on a
computer chip doubles
every year (observed in
1965)

* Since 1975, transistor

counts have doubled
every two years.

FROM ZERO TO ONE
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Gordon Moore, 1929-
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Moore’s Law

NE

* Transistor count doubles every 2 years

Microprocessor Transistor Counts 1971-2011 & Moore's Law

16-Core SPARC T3

Six-Core Core i7.

OT00

2,600,000,0004 Six-Core Xeon 7400\.\. @10-Core Xeon Westmere-EX
Dual-Core Itanium 2 @ S-codre PWE]_';g
ad-core z
1,000,000,000 PoErs #g %0 S r e
Itanium 2 with 9WE cache @ Six-Core Cpteron 2400
AND K Core i7 (Quad)
Core 2 Duo
Ianium2 @
100,000,000
® Atom
' curvegho'gls transistor
AMD KB
P £ 10,000,000] o yemang very ¢ sPemun
o
ml o F'en1iurn.ﬂ.’““:’Ks
O
Nl @ 1,000,000
0
c
©
Pt
. —
100,000+
{
I
0 10,000+
8005 @
m' 2,300- +004@ ‘e a 1502
. [ I T | 1
u 1971 1980 1990 2000 2011
i

Date of introduction AEN
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Moore’s Law Trends

100
HUMAN
Jo BRAIN
ELECTROMECHANICAL SoLID- VACUUM  TRANSISTOR INTEGRATED CIRCUIT
STATE TUBE
o RELAY GPUs
MOUSE
CORE i7 QUAD ) BRAIN
10" ™
8 PENTIUM 4, @ T CORE2DUO
» PENTIUM III ' -
x40 |- PENTIUM Il ,
w
o COMPAQ QA
=] DESKPRO 386 ‘\ COMPUTING?
O10° = ~—
2 ALTAIR aann ‘ PENTIUM
2] IBM 1130
' & 100
w e
IBM AT-80286
- DEC PDP-1
=
5.l mu PC
< UNNACI Ec APPLE Il
2 PDP 0
4 0 1 [ 1 [ 1 L [ 1 [ 1 1 1 [ 1 [ 1 1 [
S COLOSSUS
— IBM 704
102 = TABULATOR IBM SSEC
HOLLERITH ./
TABULATOR
| g BELL
104 ’ NATIONAL CALCULATOR
ELLIS 3000 MODEL 1 © BCA Research 2013
ANALYTICAL ENGINE
g8 8 2 © § ¥4 8 8 § ¥ B8 B 2 8 2 B 82 &8 8 & 8 & 2 » g 8
S &8 & > o & o o s > o o e & b5 5 & & & 3 e © o o © o
- - - - - = - - - - - - - - - - - - - - NN ~ ™~ ™~ ~

SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY", P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND
2012 REPRESENT BCA ESTIMATES.

*  “If the automobile had followed the same development cycle as the computer, a Rolls-Royce
would today cost S100, get one million miles to the gallon, and explode once a year. ..”

— Robert Cringley

FROM ZERO TO ONE
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Power Consumption

 Power = Energy consumed per unit time

NE

* Two types of power
* Dynamic power consumption
* Static power consumption

OM ZERO TO O

FR
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Vop is CVip

Dynamic Power Consumption

* Capacitor is charged f /2 times per second
(discharging from 1 to O is free)

* Dynamic power consumption

P dynamic

2

1 2
=5 CVppf

FROM ZERO TO ONE

© Digital Design and Computer Architecture, 2" Edition, 2012

Chapter 1 <134>

* Power to charge transistor gate capacitances
* Energy required to charge a capacitance, C, to

* Circuit running at frequency f: transistors switch
(from 1 to O or vice versa) at that frequency

-:-rr‘ ~ g...x\:-»,p:;;{‘;
R R Ay
s 4
\’;’!;,'

ELSEVIER



Static Power Consumption

NE

 Power consumed when no gates are
switching

* Caused by the quiescent supply current, Ipp
(also called the leakage current)

* Static power consumption

Pstatic = IppVpp ‘

OM ZERO TO O

FR
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e Estimate the power
consumption of a
wireless handheld
computer

e V. DD = 1.2V
e C = 20nF
* f = 1GHz
e Ipp = 20mA

OM ZERO TO ONE

FR
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Power Consumption Example

* Total power is sum of
dynamic and static
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Power Consumption Example

e Estimate the power
consumption of a
wireless handheld
computer

e V. DD = 1.2V
e C = 20nF
* f = 1GHz
e Ipp = 20mA
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* Total power is sum of
dynamic and static

1
P ZECVlng_l'IDDVDD

= %(20 n)(1.2)%(1 G)

+ (20 m)(1.2)
= (14.4 + 0.024)W
=144 W
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Binary Codes

Another way of representing decimal numbers

Example binary codes:

* Weighted codes
* Binary Coded Decimal (BCD) (8-4-2-1 code)
* 6-3-1-1 code
e 8-4-2-1 code (simple binary)

* Gray codes

* Excess-3 code

e 2-out-of-5 code

FROM ZERO TO ONE
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Binary Codes

Decimal # | 8-4-2-1 Gray
(BCD)

0 0000 0000 0011 00011 0000
| 1 0001 0001 0100 00101 0001
| 2 0010 0011 0101 00110 0011
l 3 0011 0100 0110 01001 0010
| 4 0100 0101 0111 01010 0110
5 0101 0111 1000 01100 1110
\ 6 0110 1000 1001 10001 1010
‘ 7 0111 1001 1010 10010 1011
: 8 1000 1011 1011 10100 1001

9 1001 1100 1100 11000 1000

FROM ZERO TO ONE

Each code combination represents a single decimal digit.

% ‘\.-": 5
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Weighted Codes

* Weighted codes: each bit position has a given
weight
* Binary Coded Decimal (BCD) (8-4-2-1 code)
* Example: 726,,=0111 0010 0110,
* 6-3-1-1 code
 Example: 1001 (6-3-1-1 code) = 1x6 + 0x3 + Ox1 + 1x1
« Example: 726,, = 1001 0011 1000,
 BCD numbers are used to represent fractional
numbers exactly (vs. floating point numbers —
which can’t - see Chapter 5)

FROM ZERO TO ONE
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0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

Weighted Codes

Decimal# | 8-4-2-1 | 6-3-1-1
(BCD)

0000
0001
0011
0100
0101
0111
1000
1001
1011
1100

 BCD Example:
726,,=0111 0010 0110,

* 6-3-1-1 code Example:
726,,=1001 0011 1000.,,,
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Excess-3 Code

W « Add 3 to number, then

| 0011 represent in binary
| 1 0100 * Example: 5,,=5+3=8=
1000,
2 0101 :
* Also called a biased
| 3 0110 number
4 0111 * Excess-3 codes (also
| 5 1000 called XS-3) were used in
| c 1001 the 1970’ to ease
» arithmetic
\ 7 1010
8 1011
‘ * Excess-3 Example:
1100

\o)

726,, = 1010 0101 1001, ,

FROM ZERO TO ONE
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2-out-of-5 Code

NE

o m e 2 out of the 5 bits
0 0 00011 are 1
L 1 00101
| 2 00110
0 3 01001  Used for error
o' 4 01010 detection:
ml 5 01100
N| 6 10001 * |f more or less than 2
| 7 10010 of 5 bits are 1, error
§' 8 10100
| 9 11000

FRO
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0000
0001
0011
0010
0110
1110
1010
1011
1001
1000

Gray Codes

* Next number differs in
only one bit position
 Example: 000, 001, 011,
010, 110, 111, 101, 100
* Example use: Analog-
to-Digital (A/D)
converters. Changing 2
bits at a time (i.e., 011
—>100) could cause
large inaccuracies.
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