

Chapter 1

Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu http://www.ee.unlv.edu/~b1morris/cpe100/

CPE100: Digital Logic Design I

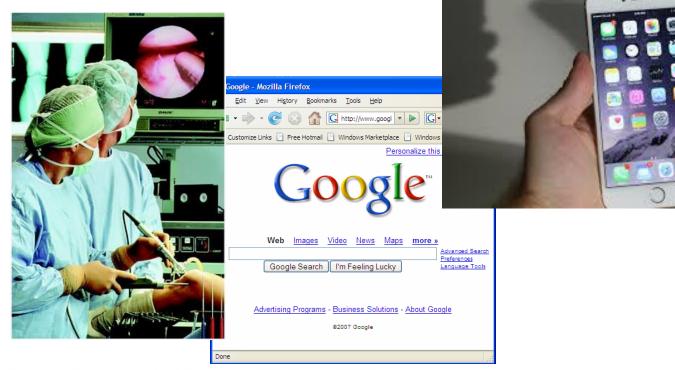
From Zero to One

Background: Digital Logic Design

- How have digital devices changed the world?
- How have digital devices changed your life?

Background

- Digital Devices have revolutionized our world
 - Internet, cell phones, rapid advances in medicine, etc.
- The semiconductor industry has grown from \$21 billion in 1985 to over \$300 billion in 2015



The Game Plan

- Purpose of course:
 - Learn the principles of digital design
 - Learn to systematically debug increasingly complex designs

ONE S

Chapter 1: Topics

- The Art of Managing Complexity
- The Digital Abstraction
- Number Systems
- Addition
- Binary Codes
- Signed Numbers
- Logic Gates
- Logic Levels
- CMOS Transistors
- Power Consumption

The Art of Managing Complexity

- Abstraction
- Discipline
- The Three –y's
 - Hierarchy
 - Modularity
 - Regularity

Abstraction

- What is abstraction?
 - Hiding details when they are not important

- Electronic computer abstraction
 - Different levels with different building blocks

Application >"hello programs Software world!" Operating device drivers Systems instructions Architecture registers datapaths Microcontrollers architecture adders Logic memories **AND** gates Digital Circuits **NOT** gates Analog amplifiers Circuits filters transistors **Devices** diodes **Physics** electrons

course

focus of this

Discipline

- Intentionally restrict design choices
- Example: Digital discipline
 - Discrete voltages (0 V, 5 V) instead of continuous (0V – 5V)
 - Simpler to design than analog circuits can build more sophisticated systems
 - Digital systems replacing analog predecessors:
 - i.e., digital cameras, digital television, cell phones, CDs

The Three -y's

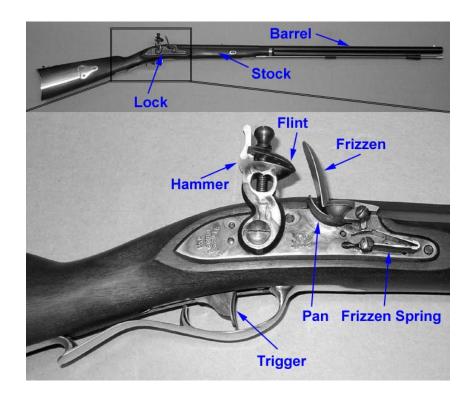
- Hierarchy
 - A system divided into modules and submodules

- Modularity
 - Having well-defined functions and interfaces

- Regularity
 - Encouraging uniformity, so modules can be easily reused

Example: Flintlock Rifle

- Hierarchy
 - Three main modules: Lock, stock, and barrel
 - Submodules of lock: Hammer, flint, frizzen, etc.

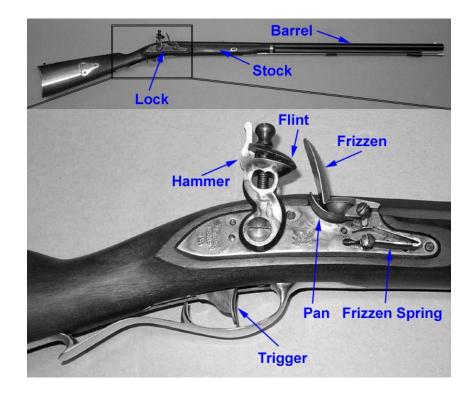


ONE RON

Example Flintlock Rifle

- Modularity
 - Function of stock: mount barrel and lock
 - Interface of stock: length and location of mounting pins

- Regularity
 - Interchangeable parts



The Art of Managing Complexity

- Abstraction
- Discipline
- The Three –y's
 - Hierarchy
 - Modularity
 - Regularity

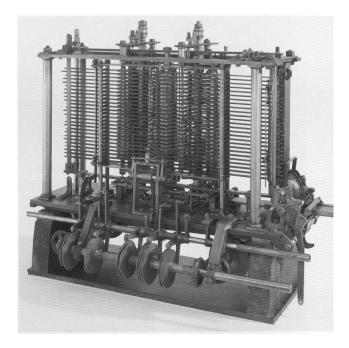
The Digital Abstraction

- Most physical variables are continuous
 - Voltage on a wire (1.33 V, 9 V, 12.2 V)
 - Frequency of an oscillation (60 Hz, 33.3 Hz, 44.1 kHz)
 - Position of mass (0.25 m, 3.2 m)
- Digital abstraction considers discrete subset of values
 - 0 V, 5 V
 - "0", "1"

The Analytical Engine

- Designed by Charles
 Babbage from 1834 –

 1871
- Considered to be the first digital computer
- Built from mechanical gears, where each gear represented a discrete value (0-9)
- Babbage died before it was finished



Chapter 1 <14>

Digital Discipline: Binary Values

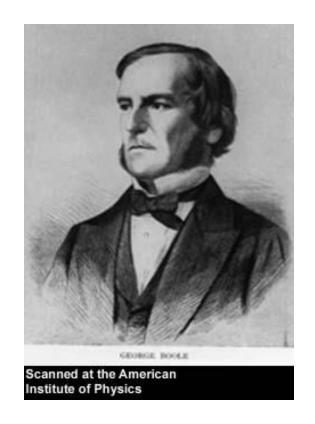
- Two discrete values
 - 1 and 0
 - 1 = TRUE = HIGH = ON
 - 0 = FALSE = LOW = OFF
- How to represent 1 and 0
 - Voltage levels, rotating gears, fluid levels, etc.
- Digital circuits use voltage levels to represent
 1 and 0
 - Bit = binary digit
 - Represents the status of a digital signal (2 values)

Why Digital Systems?

- Easier to design
- Fast
- Can overcome noise
- Error detection/correction

George Boole, 1815-1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland
- Wrote An Investigation of the Laws of Thought (1854)
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT



ONE

Number Systems

- Decimal
 - Base 10
- Binary
 - Base 2
- Hexadecimal
 - Base 16

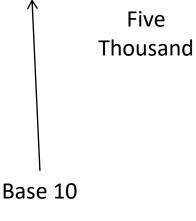
Decimal Numbers

Five

Base 10 (our everyday number system)

1's Column 10's Column 100's Column 1000's Column

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$



Three Hundred Seven Tens

Four Ones

Binary Numbers

Base 2 (computer number system)

$$1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

$$\uparrow \qquad \text{One} \qquad \text{One} \qquad \text{Two} \qquad \text{One}$$
Eight Four Two One

Powers of Two

•
$$2^0 =$$

•
$$2^1 =$$

•
$$2^2 =$$

•
$$2^3 =$$

•
$$2^4 =$$

•
$$2^5 =$$

•
$$2^6 =$$

•
$$2^7 =$$

•
$$2^8 =$$

•
$$2^9 =$$

•
$$2^{10} =$$

•
$$2^{11} =$$

•
$$2^{12} =$$

•
$$2^{13} =$$

•
$$2^{14} =$$

•
$$2^{15} =$$

Powers of Two

•
$$2^0 = 1$$

•
$$2^1 = 2$$

•
$$2^2 = 4$$

•
$$2^3 = 8$$

•
$$2^4 = 16$$

•
$$2^5 = 32$$

•
$$2^6 = 64$$

•
$$2^7 = 128$$

•
$$2^8 = 256$$

•
$$2^9 = 512$$

•
$$2^{10} = 1024$$

•
$$2^{11} = 2048$$

•
$$2^{12} = 4096$$

•
$$2^{13} = 8192$$

•
$$2^{14} = 16384$$

•
$$2^{15} = 32768$$

Handy to memorize up to 2¹⁰

ONE 20

Bits, Bytes, Nibbles ...

Bits

- Bytes = 8 bits
- Nibble = 4 bits

10010110
most least significant bit bit

10010110

- Words = 32 bits
 - Hex digit to represent nibble

CEBF9AD7

most significant byte

least significant byte

Decimal to Binary Conversion

Two Methods:

 Method 1: Find largest power of 2 that fits, subtract and repeat

 Method 2: Repeatedly divide by 2, remainder goes in next most significant bit

 Find largest power of 2 that fits, subtract, repeat

53₁₀

 Find largest power of 2 that fits, subtract, repeat

$$53_{10}$$
 32×1
 $53-32 = 21$ 16×1
 $21-16 = 5$ 4×1
 $5-4 = 1$ 1×1

$$= 110101_2$$

 Repeatedly divide by 2, remainder goes in next most significant bit

$$53_{10} =$$

 Repeatedly divide by 2, remainder goes in next most significant bit

$$53_{10} = 53/2 = 26 \text{ R1}$$
 $26/2 = 13 \text{ R0}$
 $13/2 = 6 \text{ R1}$
 $6/2 = 3 \text{ R0}$
 $3/2 = 1 \text{ R1}$
 $1/2 = 0 \text{ R1}$
MSB

 $= 110101_2$

Number Conversion

- Binary to decimal conversion
 - Convert 10011₂ to decimal

$$16 \times 1 + 8 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 19_{10}$$

- Decimal to binary conversion
 - Convert 47₁₀ to binary

$$32 \times 1 + 16 \times 0 + 8 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 1011111_2$$

D2B Example

• Convert 75₁₀ to binary

Sign

D2B Example

Convert 75₁₀ to binary

$$75_{10} = 64 + 8 + 2 + 1 = 1001011_2$$

• Or 75/2 = 37 R1

37/2 = 18 R1

18/2 = 9 R0

9/2 = 4 R1

4/2 = 2 R0

2/2 = 1 R0

1/2 = 0 R1

- N-digit decimal number
 - How many values?
 - Range?

- Example:3-digit decimal number
 - Possible values
 - Range

- N-digit decimal number
 - How many values?
 - 10^N
 - Range?
 - $[0, 10^N 1]$
- Example: 3-digit decimal number
 - Possible values
 - $10^3 = 1000$
 - Range
 - [0,999]

- N-bit binary number
 - How many values?
 - Range?

- Example: 3-bit binary number
 - Possible values
 - Range

- N-bit binary number
 - How many values?
 - 2^N
 - Range?
 - $[0, 2^N 1]$
- Example:3-bit binary number
 - Possible values

•
$$2^3 = 8$$

- Range
 - $[0,7] = [000_2, 111_2]$

- N-digit decimal number
 - How many values?
 - 10^N
 - Range?
 - $[0, 10^N 1]$
- Example:3-digit decimal number
 - Possible values
 - $10^3 = 1000$
 - Range
 - [0,999]

- N-bit binary number
 - How many values?
 - 2^N
 - Range?
 - $[0, 2^N 1]$
- Example: 3-bit binary number
 - Possible values

•
$$2^3 = 8$$

- Range
 - $[0,7] = [000_2, 111_2]$

Hexadecimal Numbers

Base 16 number system

- Shorthand for binary
 - Four binary digits (4-bit binary number) is a single hex digit

ONE

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
A	10	
В	11	
С	12	
D	13	
Е	14	
F	15	

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary

- Hexadecimal to decimal conversion:
 - Convert 0x4AF to decimal

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary
 - $0x4AF = 0100\ 1010\ 11111_2$

- Hexadecimal to decimal conversion:
 - Convert 0x4AF to decimal
 - $4 \times 16^2 + 10 \times 16^1 + 15 \times 16^0 = 1199_{10}$

Number Systems

- Popular
 - Decimal Base 10
 - Binary Base 2
 - Hexadecimal Base 16

- Others
 - Octal Base 8
 - Any other base

Octal Numbers

Same as hex with one less binary digit

Octal Digit	Decimal Equivalent	Binary Equivalent
0	0	000
1	1	001
2	2	010
3	3	011
4	4	100
5	5	101
6	6	110
7	7	111

Number Systems

• In general, an N-digit number $\{a_{N-1}a_{N-2}\dots a_1a_0\}$ of base R in decimal equals

•
$$a_{N-1}R^{N-1} + a_{N-2}R^{N-2} + \dots + a_1R^1 + a_0R^0$$

• Example: 4-digit $\{5173\}$ of base 8 (octal)

Number Systems

• In general, an N-digit number $\{a_{N-1}a_{N-2}\dots a_1a_0\}$ of base R in decimal equals

•
$$a_{N-1}R^{N-1} + a_{N-2}R^{N-2} + \dots + a_1R^1 + a_0R^0$$

- Example: 4-digit {5173} of base 8 (octal)
 - $5 \times 8^3 + 1 \times 8^2 + 7 \times 8^1 + 3 \times 8^0 = 2683_{10}$

Decimal to Octal Conversion

- Remember two methods for D2B conversion
 - 1: remove largest multiple; 2: repeated divide
- Convert 29₁₀ to octal

Decimal to Octal Conversion

- Remember two methods for D2B conversion
 - 1: remove largest multiple; 2: repeated divide
- Convert 29₁₀ to octal
- Method 2

$$29_{10} = 35_8$$

Decimal to Octal Conversion

- Remember two methods for D2B conversion
 - 1: remove largest multiple; 2: repeated divide
- Convert 29₁₀ to octal
- Method 1

$$29_{10} = 24 + 5 = 3 \times 8^1 + 5 \times 8^0 = 35_8$$

Or (better scalability)

$$29_{10} = 16 + 8 + 4 + 1 = 11101_2 = 35_8$$

Octal to Decimal Conversion

Convert 163₈ to decimal

Octal to Decimal Conversion

Convert 163₈ to decimal

•
$$163_8 = 1 \times 8^2 + 6 \times 8^1 + 3$$

•
$$163_8 = 64 + 48 + 3$$

•
$$163_8 = 115_{10}$$

Recap: Binary and Hex Numbers

• Example 1: Convert 83₁₀ to hex

Example 2: Convert 01101011₂ to hex and decimal

Example 3: Convert 0xCA3 to binary and decimal

Recap: Binary and Hex Numbers

- Example 1: Convert 83₁₀ to hex
 - $83_{10} = 64 + 16 + 2 + 1 = 1010011_2$
 - $1010011_2 = 1010011_2 = 53_{16}$
- Example 2: Convert 01101011₂ to hex and decimal
 - $01101011_2 = 0110 \ 1011_2 = 6B_{16}$
 - $0x6B = 6 \times 16^1 + 11 \times 16^0 = 96 + 11 = 107$
- Example 3: Convert 0xCA3 to binary and decimal
 - $0xCA3 = 1100\ 1010\ 0011_2$
 - $0xCA3 = 12 \times 16^2 + 10 \times 16^1 + 3 \times 16^0 = 3235_{10}$

Large Powers of Two

- $2^{10} = 1 \text{ kilo}$ $\approx 1000 (1024)$
- $2^{20} = 1 \text{ mega} \approx 1 \text{ million } (1,048,576)$
- $2^{30} = 1$ giga ≈ 1 billion (1,073,741,824)
- $2^{40} = 1 \text{ tera}$ $\approx 1 \text{ trillion } (1,099,511,627,776)$

NE NO

Large Powers of Two: Abbreviations

• $2^{10} = 1 \text{ kilo}$ $\approx 1000 (1024)$

for example: 1 kB = 1024 Bytes

1 kb = 1024 bits

• $2^{20} = 1 \text{ mega} \approx 1 \text{ million } (1,048,576)$

for example: 1 MiB, 1 Mib (1 megabit)

• $2^{30} = 1$ giga ≈ 1 billion (1,073,741,824)

for example: 1 GiB, 1 Gib

Estimating Powers of Two

What is the value of 2²⁴?

 How many values can a 32-bit variable represent?

Estimating Powers of Two

- What is the value of 2²⁴?
 - $2^4 \times 2^{20} \approx 16$ million

- How many values can a 32-bit variable represent?
 - $2^2 \times 2^{30} \approx 4$ billion

Binary Codes

Another way of representing decimal numbers in binary

Example binary codes:

- Weighted codes
 - Binary Coded Decimal (BCD) (8-4-2-1 code)
 - 6-3-1-1 code
 - 8-4-2-1 code (simple binary)
- Gray codes
- Excess-3 code
- 2-out-of-5 code

ASCII-Code

TABLE 1-3 ASCII Code

TABLE 1-3	AS	CII	Coc	le																				
			ASC	III C	ode	9					ASC	III C	ode					-	ASC	II Co	ode			
Character	A_6	A ₅	A_4	A_3	A_2	A ₁	A_0	Character	A_6	A_5	A_4	A_3	A_2	A_1	A_0	Character	A_6	A_5	A_4	A ₃	A_2	A_1	A ₀	
space	0	1	0	0	0	0	0	@	1	0	0	0	0	0	0	,	1	1	0	0	0	0	0	
1	0	1	0	0	0	0	1	Α	1	0	0	0	0	0	1	a	1	1	0	0	0	0	1	
"	0	1	0	0	0	1	0	В	1	0	0	0	0	1	0	b	1	1	0	0	0	1	0	
#	0	1	0	0	0	1	1	C	1	0	0	0	0	1	1	c	1	1	0	0	0	1	1	
\$	0	1	0	0	1	0	0	D	1	0	0	0	1	0	0	d	1	1	0	0	1	0	0	
%	0	1	0	0	1	0	1	E	1	0	0	0	1	0	1	e	1	1	0	0	1	0	1	
&	0	1	0	0	1	1	0	F	1	0	0	0	1	1	0	f	1	1	0	0	1	1	0	
,	0	1	0	0	1	1	1	G	1	0	0	0	1	1	1	g	1	1	0	0	1	1	1	
(0	1	0	1	0	0	0	н	1	0	0	1	0	0	0	h	1	1	0	1	0	0	0	
)	0	1	0	1	0	0	1	1	1	0	0	1	0	0	1	i	1	1	0	1	0	0	1	
*	0	1	0	1	0	1	0	J	1	0	0	1	0	1	0	j	1	1	0	1	0	1	0	
+	0	1	0	1	0	1	1	K	1	0	0	1	0	1	1	k	1	1	0	1	0	1	1	
	0	1	0	1	1	0	0	L	1	0	0	1	1	0	0		1	1	0	1	1	0	0	
-	0	1	0	1	1	0	1	M	1	0	0	1	1	0	1	m	1	1	0	1	1	0	1	
	0	1	0	1	1	1	0	N	1	0	0	1	1	1	0	n	1	1	0	1	1	1	0	
/	0	1	0	1	1	1	1	0	1	0	0	1	1	1	1	0	1	1	0	1	1	1	1	
0	0	1	1	0	0	0	0	P	1	0	1	0	0	0	0	р	1	1	1	0	0	0	0	
1	0	1	1	0	0	0	1	Q	1	0	1	0	0	0	1	q	1	1	1	0	0	0	1	
2	0	1	1	0	0	1	0	R	1	0	1	0	0	1	0	r	1	1	1	0	0	1	0	
3	0	1	1	0	0	1	1	S	1	0	1	0	0	1	1	S	1	1	1	0	0	1	1	
4	0	1	1	0	1	0	0	Т	1	0	1	0	1	0	0	t	1	1	1	0	1	0	0	
5	0	1	1	0	1	0	1	U	1	0	1	0	1	0	1	u	1	1	1	0	1	0	1	
6	0	1	1	0	1	1	0	V	1	0	1	0	1	1	0	v	1	1	1	0	1	1	0	
7	0	1	1	0	1	1	1	W	1	0	1	0	1	1	1	w	1	1	1	0	1	1	1	
8	0	1	1	1	0	0	0	X	1	0	1	1	0	0	0	X	1	1	1	1	0	0	0	4
9	0	1	1	1	0	0	1	Y	1	0	1	1	0	0	1	у	1	1	1	1	0	0	1	2
:	0	1	1	1	0	1	0	Z	1	0	1	1	0	1	0	z	1	1	1	1	0	1	0	ing
;	0	1	1	1	0	1	1	Į.	1	0	1	1	0	1	1	{	1	1	1	1	0	1	1	earr
<	0	1	1	1	1	0	0	<u>`</u>	1	0	1	1	1	0	0	Į	1	1	1	1	1	0	0	Cengage Learning 2014
=	0	1	1	1	1	0	1	J	1	0	1	1	1	0	1	}	1	1	1	1	1	0	1	nga
>	0	1	1	1	1	1	0	۸	1	0	1	1	1	1	0	~	1	1	1	1	1	1	0	ق
?	0	1	1	1	1	1	1	_	1	0	1	1	1	1	1	delete	1	1	1	1	1	1	1	0

Binary Codes

Decimal #	8-4-2-1 (BCD)	6-3-1-1	Excess-3	2-out-of-5	Gray		
0	0000	0000	0011	00011	0000		
1	0001	0001	0100	00101	0001		
2	0010	0011	0101	00110	0011		
3	0011	0100	0110	01001	0010		
4	0100	0101	0111	01010	0110		
5	0101	0111	1000	01100	1110		
6	0110	1000	1001	10001	1010		
7	0111	1001	1010	10010	1011		
8	1000	1011	1011	10100	1001		
9	1001	1100	1100	11000	1000		

Each code combination represents a single decimal digit.

Gray Codes

Decimal #	Gray
0	0000
1	0001
2	0011
3	0010
4	0110
5	1110
6	1010
7	1011
8	1001
9	1000

- Next number differs in only one bit position
 - Example: 000, 001, 011, 010, 110, 111, 101, 100
- Example use: Analog-to-Digital (A/D) converters. Changing 2 bits at a time (i.e., 011 →100) could cause large inaccuracies.
- Will use in K-maps

Addition

Decimal

Binary

ONE Sio

Addition

Decimal

Binary

ONE Sio

Addition

Decimal

Binary

Binary Addition Examples

 Add the following 4-bit binary numbers

 Add the following 4-bit binary numbers

Binary Addition Examples

Add the following 4-bit binary numbers

 Add the following 4-bit binary numbers

ONE RON

Binary Addition Examples

 Add the following 4-bit binary numbers

 Add the following 4-bit binary numbers

Overflow!

Overflow

- Digital systems operate on a fixed number of bits
- Overflow: when result is too big to fit in the available number of bits
- See previous example of 11 + 6

Signed Binary Numbers

- Sign/Magnitude Numbers
- Two's Complement Numbers

ONE Sign

Sign/Magnitude

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - **Positive number:** sign bit = 0
 - Negative number: sign bit = 1

$$A:\{a_{N-1},a_{N-2},\cdots a_2,a_1,a_0\}$$

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

- Example, 4-bit sign/magnitude representations of \pm 6:
 - +6=
 - **-**6 =
- Range of an *N*-bit sign/magnitude number:

ONE Sio

Sign/Magnitude

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - **Positive number:** sign bit = 0
 - Negative number: sign bit = 1

$$A:\{a_{N-1},a_{N-2},\cdots a_2,a_1,a_0\}$$

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

- Example, 4-bit sign/magnitude representations of \pm 6:
 - +6 = 0110
 - -6 = **1110**
- Range of an *N*-bit sign/magnitude number:
 - $[-(2^{N-1}-1), 2^{N-1}-1]$

Sign/Magnitude Numbers

- Problems:
 - Addition doesn't work, for example -6 + 6:

$$+0110$$

• Two representations of $0 (\pm 0)$:

•
$$(+0) =$$

•
$$(-0) =$$

Sign/Magnitude Numbers

- Problems:
 - Addition doesn't work, for example -6 + 6:

$$+0110$$

- Two representations of $0 (\pm 0)$:
 - (+0) = 0000
 - (-0) = 1000

Two's Complement Numbers

- Don't have same problems as sign/magnitude numbers:
 - Addition works
 - Single representation for 0

- Range of representable numbers not symmetric
 - One extra negative number

Two's Complement Numbers

• msb has value of -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an *N*-bit two's comp number?

- Most positive 4-bit number?
- Most negative 4-bit number?

Two's Complement Numbers

• msb has value of -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an *N*-bit two's comp number?

•
$$[-(2^{N-1}), 2^{N-1} - 1]$$

- Most positive 4-bit number? 0111
- Most negative 4-bit number? 1000

"Taking the Two's Complement"

- Flips the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$

"Taking the Two's Complement"

- Flips the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$
 - 1. 1100

$$2. \ \ \frac{+ \ 1}{1101 = -3_{10}}$$

Two's Complement Examples

• Take the two's complement of $6_{10} = 0110_2$

• What is the decimal value of the two's complement number 1001₂?

Two's Complement Examples

- Take the two's complement of $6_{10} = 0110_2$
 - 1. 1001

$$2. \ \ \frac{+ \ \ 1}{1010_2} = -6_{10}$$

- What is the decimal value of the two's complement number 1001₂?
 - 1. 0110

2.
$$\frac{+}{0111_2} = 7_{10}$$
, so $1001_2 = -7_{10}$

Two's Complement Addition

• Add 6 + (-6) using two's complement numbers

• Add -2 + 3 using two's complement numbers

Two's Complement Addition

• Add 6 + (-6) using two's complement numbers

• Add -2 + 3 using two's complement numbers

Two's Complement Addition

• Add 6 + (-6) using two's complement numbers

• Add -2 + 3 using two's complement numbers

Increasing Bit Width

- Extend number from N to M bits (M > N):
 - Sign-extension
 - Zero-extension

Sign-Extension

- Sign bit copied to msb's
- Number value is same

- Example 1
 - 4-bit representation of 3 = 0011
 - 8-bit sign-extended value:
- Example 2
 - 4-bit representation of -7 = 1001
 - 8-bit sign-extended value:

Sign-Extension

- Sign bit copied to msb's
- Number value is same

- Example 1
 - 4-bit representation of 3 = 0011
 - 8-bit sign-extended value: 00000011
- Example 2
 - 4-bit representation of -7 = 1001
 - 8-bit sign-extended value: 11111001

Zero-Extension

- Zeros copied to msb's
- Value changes for negative numbers

- Example 1
 - 4-bit value =

0011₂

- 8-bit zero-extended value:
- Example 2
 - 4-bit value =

1001

8-bit zero-extended value:

Zero-Extension

- Zeros copied to msb's
- Value changes for negative numbers

Example 1

4-bit value =

00112

- 8-bit zero-extended value: 00000011
- Example 2
 - 4-bit value =

1001

• 8-bit zero-extended value: 00001001

NE

Zero-Extension

- Zeros copied to msb's
- Value changes for negative numbers

Example 1

$$0011_2 = 3_{10}$$

- 8-bit zero-extended value: $00000011 = 3_{10}$
- Example 2

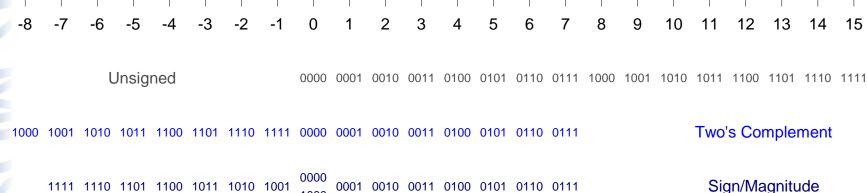
$$1001 = -7_{10}$$

• 8-bit zero-extended value: $00001001 = 9_{10}$

Number System Comparison

Number System	Range
Unsigned	$[0, 2^{N}-1]$
Sign/Magnitude	$[-(2^{N-1}-1), 2^{N-1}-1]$
Two's Complement	$[-2^{N-1}, 2^{N-1}-1]$

For example, 4-bit representation:

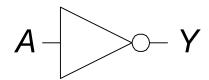


Logic Gates

- Perform logic functions:
 - inversion (NOT), AND, OR, NAND, NOR, etc.
- Single-input:
 - NOT gate, buffer
- Two-input:
 - AND, OR, XOR, NAND, NOR, XNOR
- Multiple-input

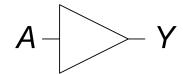
Single-Input Logic Gates

NOT



$$Y = \overline{A}$$

BUF

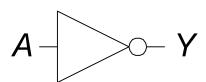


$$Y = A$$

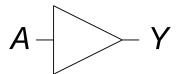
Α	Y
0	
1	

Single-Input Logic Gates

Bubble on wire indicates inversion



$$Y = \overline{A}$$



$$Y = A$$

A	Y
0	0
1	1

 Note: bar over variable indicates complement (invert value)

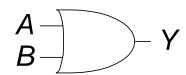
Two-Input Logic Gates

AND

$$Y = AB$$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

OR



$$Y = A + B$$

A	В	Y
0	0	
0	1	
1	0	
1	1	

Two-Input Logic Gates

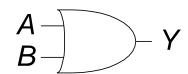
AND



$$Y = AB$$

Α	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

OR

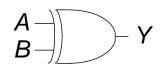


$$Y = A + B$$

_A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

More Two-Input Logic Gates

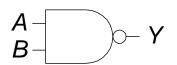
XOR



$$Y = A \oplus B$$

A	В	Y
0	0	
0	1	
1	0	
1	1	

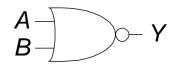
NAND



$$Y = \overline{AB}$$

Α	В	Υ
0	0	
0	1	
1	0	
1	1	

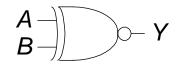
NOR



$$Y = \overline{A + B}$$

A	В	Y
0	0	
0	1	
1	0	
1	1	

XNOR

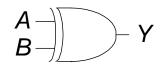


$$Y = \overline{A + B}$$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

More Two-Input Logic Gates

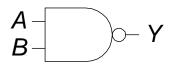
XOR



$$Y = A \oplus B$$

A	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

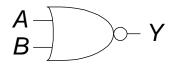
NAND



$$Y = \overline{AB}$$

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

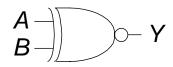
NOR



$$Y = \overline{A + B}$$

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

XNOR



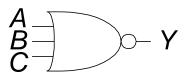
$$Y = \overline{A + B}$$

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

SE

Multiple-Input Logic Gates

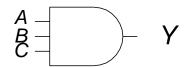
NOR₃



$$Y = \overline{A + B + C}$$

_A	В	С	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

AND3

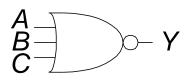


$$Y = ABC$$

A	В	С	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Multiple-Input Logic Gates

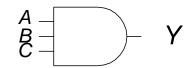
NOR3



$$Y = \overline{A + B + C}$$

Α	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

AND3



$$Y = ABC$$

Α	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

• Multi-input XOR = Odd parity (#on inputs odd → 1)

Logic Levels

- Discrete voltages represent 1 and 0
- For example:
 - 0 = ground (GND) or 0 volts
 - 1 = V_{DD} or 5 volts
- What about 4.99 volts? Is that a 0 or a 1?
- What about 3.2 volts?

Logic Levels

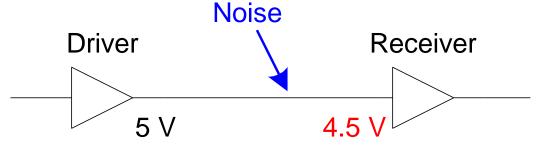
Must have range of voltages for 1 and 0

Different ranges for inputs and outputs to allow for noise

What is Noise?

- Anything that degrades the signal
 - E.g., resistance, power supply noise, coupling to neighboring wires, etc.

 Example: a gate (driver) outputs 5 V but, because of resistance in a long wire, receiver gets 4.5 V



The Static Discipline

 With logically valid inputs, every circuit element must produce logically valid outputs

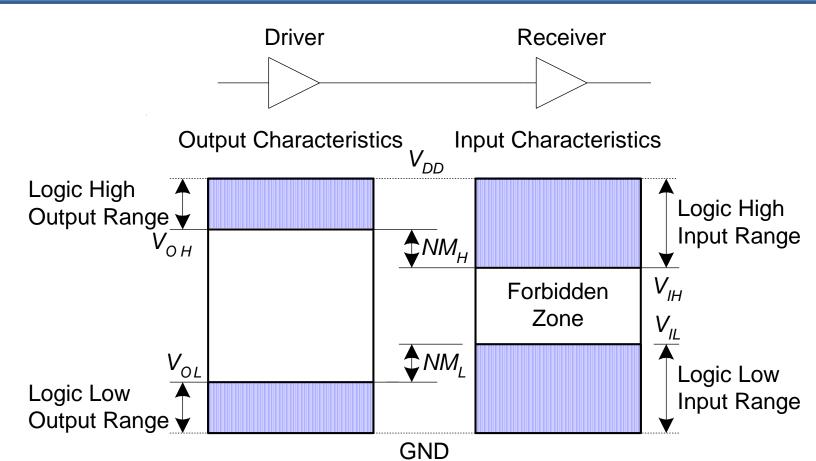
Use limited ranges of voltages to represent discrete values

Real Logic Levels

 Want driver to output "clean" high/low and receiver to handle noisy high/low

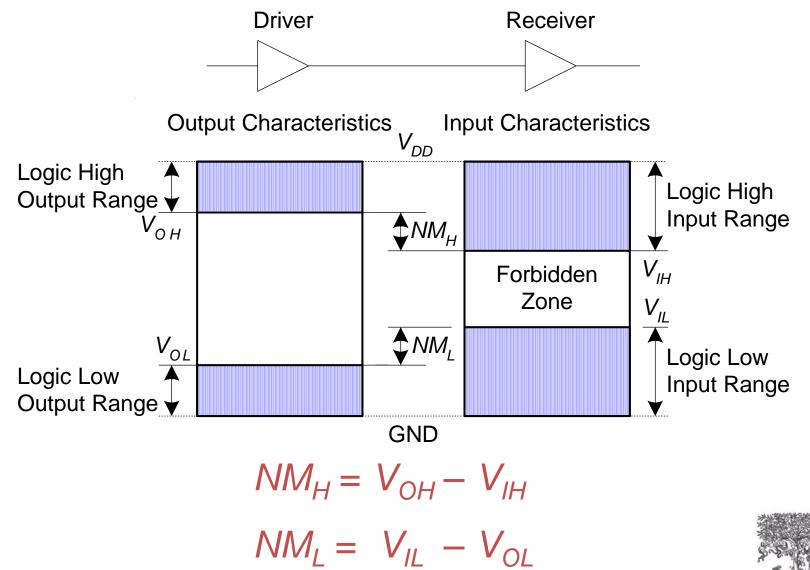
ONE

Real Logic Levels



 Want driver to output "clean" high/low and receiver to handle noisy high/low

Real Logic Levels



V_{DD} Scaling

- In 1970's and 1980's, $V_{DD} = 5 \text{ V}$
- V_{DD} has dropped
 - 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, ...
 - Avoid frying tiny transistors
 - Save power

- Be careful connecting chips with different supply voltages
 - Easy to fry if not careful

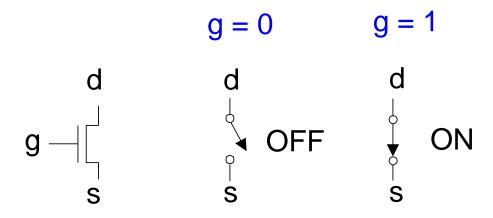
ONE

Logic Family Examples

Logic Family	V_{DD}	V_{IL}	V_{IH}	V_{OL}	V_{OH}
TTL	5 (4.75 - 5.25)	0.8	2.0	0.4	2.4
CMOS	5 (4.5 - 6)	1.35	3.15	0.33	3.84
LVTTL	3.3 (3 - 3.6)	0.8	2.0	0.4	2.4
LVCMOS	3.3 (3 - 3.6)	0.9	1.8	0.36	2.7

Transistors

- Logic gates built from transistors
- Simple model: 3-ported voltage-controlled switch
 - 2 ports connected depending on voltage of 3rd
 - d and s are connected (ON) when g is 1

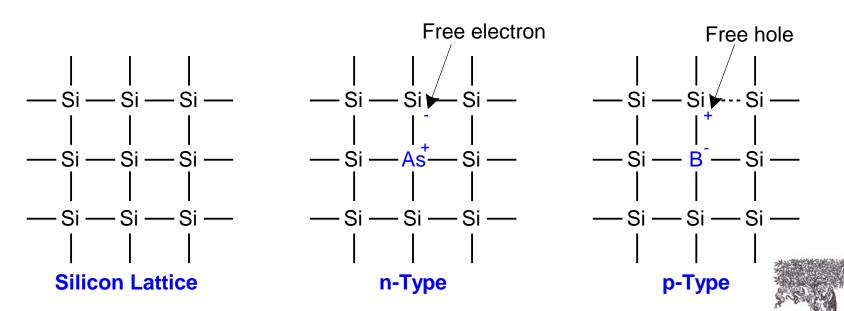


Robert Noyce, 1927-1990

- Nicknamed "Mayor of Silicon Valley"
- Cofounded Fairchild Semiconductor in 1957
- Cofounded Intel in 1968
- Co-invented the integrated circuit

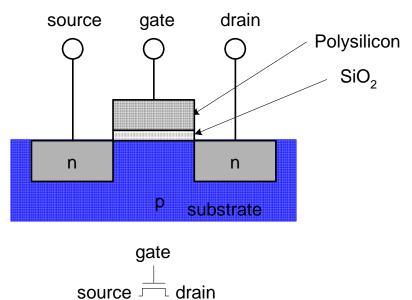
Silicon

- Transistors built from silicon, a semiconductor
- Pure silicon is a poor conductor (no free charges)
- Doped silicon is a good conductor (free charges)
 - n-type (free negative charges, electrons)
 - p-type (free positive charges, holes)



MOS Transistors

- Metal oxide silicon (MOS) transistors:
 - Polysilicon (used to be metal) gate
 - Oxide (silicon dioxide) insulator
 - Doped silicon



nMOS

ZE

nMOS Transistors

- Gate = 0
- OFF (no connection between source and drain)
- source drain

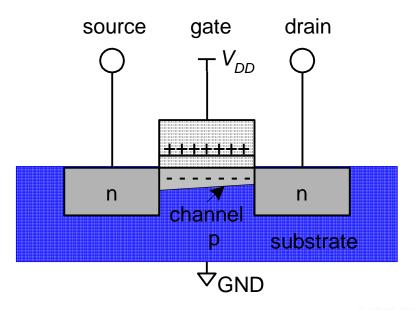
 gate
 GND

 gate
 GND

Diode connection from p to n doped area

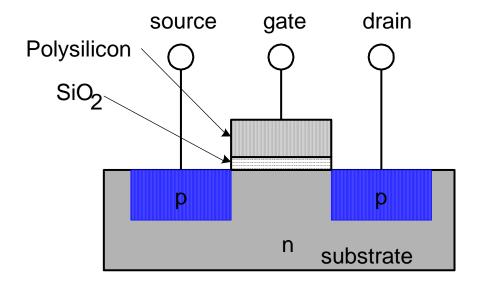
→ current cannot travel from n→p

- Gate = 1
- ON (channel between source and drain)



pMOS Transistors

- pMOS transistor is opposite of nMOS
 - ON when Gate = 0
 - OFF when Gate = 1



Note bubble on gate to indicate on when low source drain

Transistor Function

Voltage controlled switch

pMOS

$$g \longrightarrow \int_{d}$$

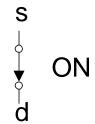
$$g = 0$$

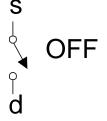
$$0$$

$$0$$

$$0$$

$$0$$



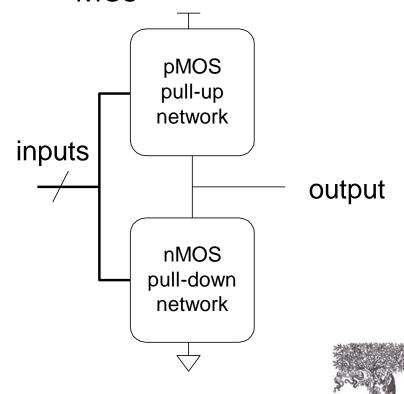


Transistor Composition

- nMOS: pass good 0's
 - Connect source to GND
 - "Pull down" transistor

- pMOS: pass good 1's
 - Connect source to VDD
 - "Pull up" transistor

- Build logic gates from composition
 - CMOS = complementary MOS

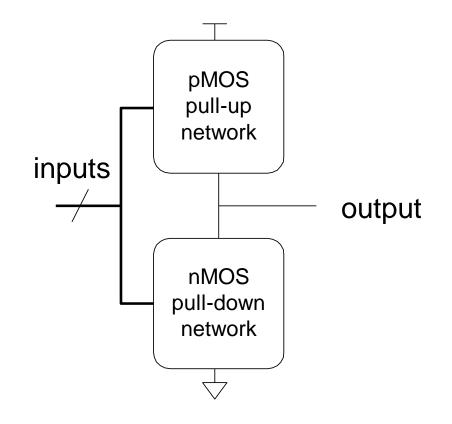


ONE

CMOS Gate Structure

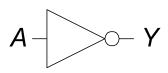
- Pull-up pMOS network connects to V_{DD}
- Pull-down nMOS network connects to GND

 Use series and parallel connections to implement gate logic

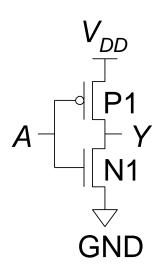


CMOS Gates: NOT Gate

NOT



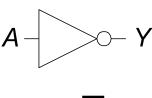
$$Y = \overline{A}$$



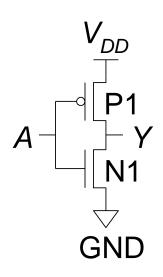
A	P1	N1	Y
0			
1			

CMOS Gates: NOT Gate

NOT



$$Y = \overline{A}$$

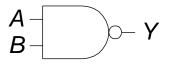


A	P1	N1	Y			
0	ON	OFF	1			
1	OFF	ON	0			

ONE

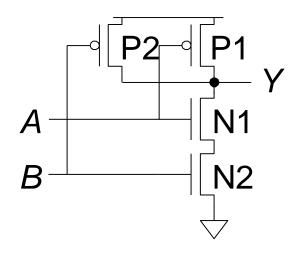
CMOS Gates: NAND Gate

NAND



$$Y = \overline{AB}$$

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

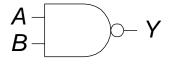


A	B	P1	P2	N1	N2	Y
0	0					
0	1					
1	0					
1	1					

ONE

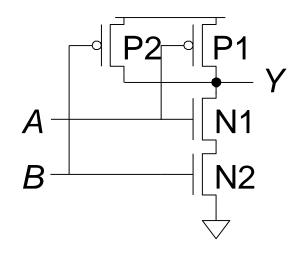
CMOS Gates: NAND Gate

NAND



$$Y = \overline{AB}$$

_A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0



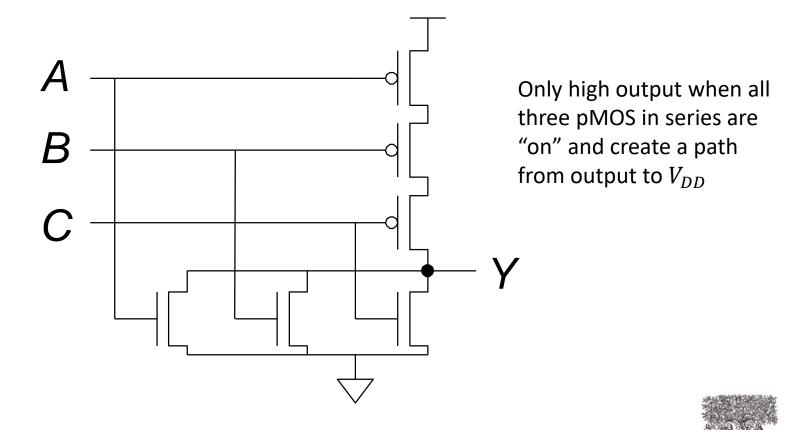
A	B	P1	P2	N1	N2	Y
0	0	ON	ON	OFF	OFF	1
0	1	ON	OFF	OFF	ON	1
1	0	OFF	ON	ON	OFF	1
1	1	OFF	OFF	ON	ON	0

CMOS Gates: NOR Gate

How can you build three input (A, B, C) NOR gate?

CMOS Gates: NOR Gate

How can you build three input (A, B, C) NOR gate?

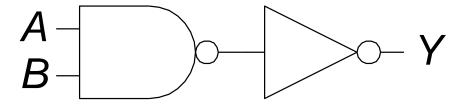


CMOS Gates: AND Gate

How can you build 2 input AND gate?

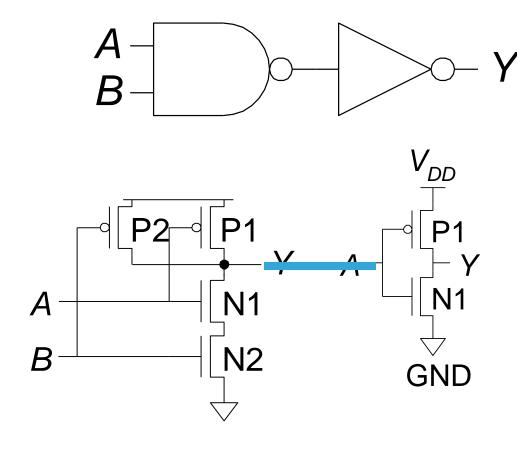
CMOS Gates: AND Gate

How can you build 2 input AND gate?



CMOS Gates: AND Gate

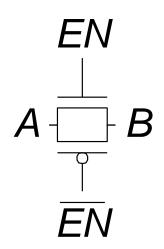
How can you build 2 input AND gate?



Note: AND requires 2 more gates than NAND. Inverted logic is more efficient implementation.

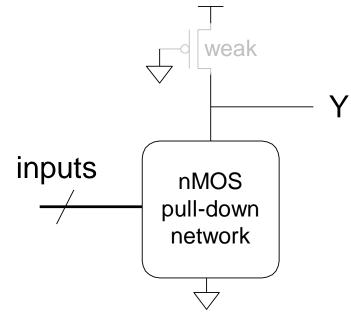
Transmission Gates

- nMOS pass 1's poorly, pMOS pass 0's poorly
- Transmission gate is for passing signal
 - Pass both 0 and 1 well
- When EN = 1, the switch is ON:
 - $\overline{EN} = 0$ and A is connected to B
- When EN = 0, the switch is OFF:
 - A is not connected to B



Psuedo-nMOS

- Replace pull-up network with weak pMOS transistor that is always on
 - pMOS gate tied to ground
- pMOS transistor: pulls output HIGH only when nMOS network not pulling it LOW

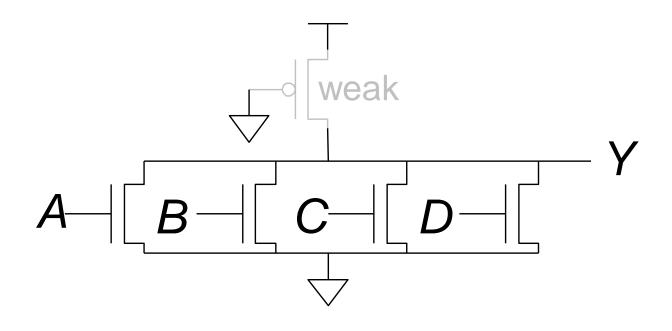


Psuedo-nMOS Example: NOR4

How many transistors needed?

Psuedo-nMOS Example: NOR4

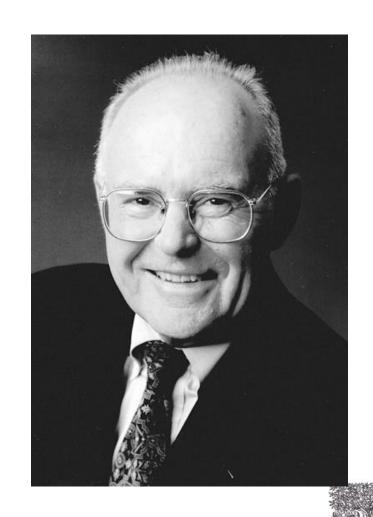
- How many transistors needed?
 - Only 5 since a single pMOS is used



ONE 20

Gordon Moore, 1929-

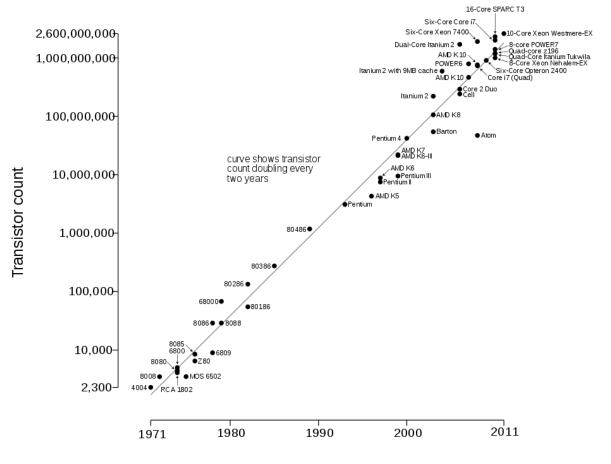
- Cofounded Intel in 1968 with Robert Noyce.
- Moore's Law: number of transistors on a computer chip doubles every year (observed in 1965)
 - Since 1975, transistor counts have doubled every two years.



Moore's Law

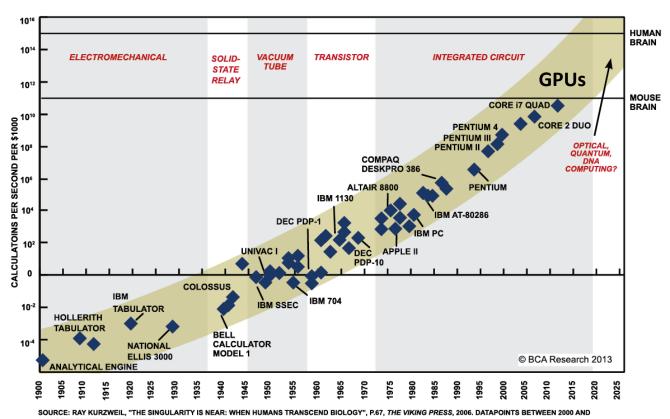
Transistor count doubles every 2 years

Microprocessor Transistor Counts 1971-2011 & Moore's Law



ONE

Moore's Law Trends



2012 REPRESENT BCA ESTIMATES.

 "If the automobile had followed the same development cycle as the computer, a Rolls-Royce would today cost \$100, get one million miles to the gallon, and explode once a year . . ."

Robert Cringley

Power Consumption

Power = Energy consumed per unit time

- Two types of power
 - Dynamic power consumption
 - Static power consumption

Dynamic Power Consumption

- Power to charge transistor gate capacitances
 - Energy required to charge a capacitance, C, to V_{DD} is CV_{DD}^2
 - Circuit running at frequency f: transistors switch (from 1 to 0 or vice versa) at that frequency
 - Capacitor is charged f/2 times per second (discharging from 1 to 0 is free)
- Dynamic power consumption

$$P_{dynamic} = \frac{1}{2}CV_{DD}^2 f$$

Static Power Consumption

- Power consumed when no gates are switching
- Caused by the quiescent supply current, I_{DD} (also called the leakage current)

Static power consumption

$$P_{static} = I_{DD}V_{DD}$$

Power Consumption Example

- Estimate the power consumption of a wireless handheld computer
 - $V_DD = 1.2 \text{ V}$
 - $C = 20 \, \text{nF}$
 - f = 1 GHz
 - $I_{DD} = 20 \text{ mA}$

 Total power is sum of dynamic and static

Power Consumption Example

- Estimate the power consumption of a wireless handheld computer
 - $V_DD = 1.2 \text{ V}$
 - $C = 20 \, \text{nF}$
 - f = 1 GHz
 - $I_{DD} = 20 \text{ mA}$

 Total power is sum of dynamic and static

$$P = \frac{1}{2}CV_{DD}^{2}f + I_{DD}V_{DD}$$

$$= \frac{1}{2}(20 \text{ n})(1.2)^{2}(1 \text{ G})$$

$$+ (20 \text{ m})(1.2)$$

$$= (14.4 + 0.024)W$$

$$= 14.4 \text{ W}$$

Extras

Binary Codes

Another way of representing decimal numbers

Example binary codes:

- Weighted codes
 - Binary Coded Decimal (BCD) (8-4-2-1 code)
 - 6-3-1-1 code
 - 8-4-2-1 code (simple binary)
- Gray codes
- Excess-3 code
- 2-out-of-5 code

Binary Codes

Decimal #	8-4-2-1 (BCD)	6-3-1-1	Excess-3	2-out-of-5	Gray
0	0000	0000	0011	00011	0000
1	0001	0001	0100	00101	0001
2	0010	0011	0101	00110	0011
3	0011	0100	0110	01001	0010
4	0100	0101	0111	01010	0110
5	0101	0111	1000	01100	1110
6	0110	1000	1001	10001	1010
7	0111	1001	1010	10010	1011
8	1000	1011	1011	10100	1001
9	1001	1100	1100	11000	1000

Each code combination represents a single decimal digit.

ASCII-Code

TABLE 1-3 ASCII Code

IABLE 1-3	AS	CII	Coc	e																			
			ASC	II C	ode	e					ASC	II C	ode					-	ASC	II C	ode		
Character	A_6	A ₅	A ₄	A ₃	A ₂	A ₁	A_0	Character	A_6	A ₅	A_4	A ₃	A ₂	A_1	A ₀	Character	A_6	A۶	A_4	A ₃	A ₂	A ₁	A ₀
space	0	1	0	0	0	0	0	@	1	0	0	0	0	0	0	,	1	1	0	0	0	0	0
	0	1	0	0	0	0	1	Α	1	0	0	0	0	0	1	a	1	1	0	0	0	0	1
"	0	1	0	0	0	1	0	В	1	0	0	0	0	1	0	b	1	1	0	0	0	1	0
#	0	1	0	0	0	1	1	C	1	0	0	0	0	1	1	c	1	1	0	0	0	1	1
\$	0	1	0	0	1	0	0	D	1	0	0	0	1	0	0	d	1	1	0	0	1	0	0
%	0	1	0	0	1	0	1	E	1	0	0	0	1	0	1	e	1	1	0	0	1	0	1
&	0	1	0	0	1	1	0	F	1	0	0	0	1	1	0	f	1	1	0	0	1	1	0
,	0	1	0	0	1	1	1	G	1	0	0	0	1	1	1	g	1	1	0	0	1	1	1
(0	1	0	1	0	0	0	н	1	0	0	1	0	0	0	h	1	1	0	1	0	0	0
)	0	1	0	1	0	0	1	1	1	0	0	1	0	0	1	i	1	1	0	1	0	0	1
*	0	1	0	1	0	1	0	J	1	0	0	1	0	1	0	j	1	1	0	1	0	1	0
+	0	1	0	1	0	1	1	K	1	0	0	1	0	1	1	k	1	1	0	1	0	1	1
,	0	1	0	1	1	0	0	L	1	0	0	1	1	0	0	- 1	1	1	0	1	1	0	0
_	0	1	0	1	1	0	1	M	1	0	0	1	1	0	1	m	1	1	0	1	1	0	1
	0	1	0	1	1	1	0	N	1	0	0	1	1	1	0	n	1	1	0	1	1	1	0
/	0	1	0	1	1	1	1	0	1	0	0	1	1	1	1	0	1	1	0	1	1	1	1
0	0	1	1	0	0	0	0	Р	1	0	1	0	0	0	0	р	1	1	1	0	0	0	0
1	0	1	1	0	0	0	1	Q	1	0	1	0	0	0	1	q	1	1	1	0	0	0	1
2	0	1	1	0	0	1	0	R	1	0	1	0	0	1	0	r	1	1	1	0	0	1	0
3	0	1	1	0	0	1	1	S	1	0	1	0	0	1	1	S	1	1	1	0	0	1	1
4	0	1	1	0	1	0	0	T	1	0	1	0	1	0	0	t	1	1	1	0	1	0	0
5	0	1	1	0	1	0	1	U	1	0	1	0	1	0	1	u	1	1	1	0	1	0	1
6	0	1	1	0	1	1	0	V	1	0	1	0	1	1	0	v	1	1	1	0	1	1	0
7	0	1	1	0	1	1	1	W	1	0	1	0	1	1	1	w	1	1	1	0	1	1	1
8	0	1	1	1	0	0	0	X	1	0	1	1	0	0	0	x	1	1	1	1	0	0	0
9	0	1	1	1	0	0	1	Y	1	0	1	1	0	0	1	У	1	1	1	1	0	0	1
:	0	1	1	1	0	1	0	Z	1	0	1	1	0	1	0	z	1	1	1	1	0	1	0
;	0	1	1	1	0	1	1	Į.	1	0	1	1	0	1	1	{	1	1	1	1	0	1	1
<	0	1	1	1	1	0	0	,	1	0	1	1	1	0	0	Į	1	1	1	1	1	0	0
=	0	1	1	1	1	0	1	j	1	0	1	1	1	0	1	}	1	1	1	1	1	0	1
>	0	1	1	1	1	1	0	^	1	0	1	1	1	1	0	~	1	1	1	1	1	1	0
?	0	1	1	1	1	1	1	_	1	0	1	1	1	1	1	delete	1	1	1	1	1	1	1

Weighted Codes

- Weighted codes: each bit position has a given weight
 - Binary Coded Decimal (BCD) (8-4-2-1 code)
 - Example: $726_{10} = 0111 \ 0010 \ 0110_{BCD}$
 - 6-3-1-1 code
 - **Example:** $1001 (6-3-1-1 \text{ code}) = 1\times6 + 0\times3 + 0\times1 + 1\times1$
 - Example: $726_{10} = 1001 \ 0011 \ 1000_{6311}$
- BCD numbers are used to represent fractional numbers exactly (vs. floating point numbers – which can't - see Chapter 5)

Weighted Codes

Decimal #	8-4-2-1 (BCD)	6-3-1-1
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0100
4	0100	0101
5	0101	0111
6	0110	1000
7	0111	1001
8	1000	1011
9	1001	1100

BCD Example:

$$726_{10} = 0111\ 0010\ 0110_{BCD}$$

6-3-1-1 code Example:

$$726_{10} = 1001\ 0011\ 1000_{6311}$$

ONE ROM

Excess-3 Code

Decimal #	Excess-3
0	0011
1	0100
2	0101
3	0110
4	0111
5	1000
6	1001
7	1010
8	1011
9	1100

- Add 3 to number, then represent in binary
 - Example: $5_{10} = 5 + 3 = 8 = 1000_2$
- Also called a biased number
- Excess-3 codes (also called XS-3) were used in the 1970's to ease arithmetic

Excess-3 Example:

$$726_{10} = 1010\ 0101\ 1001_{xs3}$$

2-out-of-5 Code

Decimal #	2-out-of-5
0	00011
1	00101
2	00110
3	01001
4	01010
5	01100
6	10001
7	10010
8	10100
9	11000

2 out of the 5 bits
 are 1

- Used for error detection:
 - If more or less than 2 of 5 bits are 1, error

N N 2

Gray Codes

Decimal #	Gray
0	0000
1	0001
2	0011
3	0010
4	0110
5	1110
6	1010
7	1011
8	1001
9	1000

- Next number differs in only one bit position
 - Example: 000, 001, 011, 010, 110, 111, 101, 100
- Example use: Analog-to-Digital (A/D) converters. Changing 2 bits at a time (i.e., 011 →100) could cause large inaccuracies.

