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• Note: New homework instructions 
starting with HW03 

• Homework is due at the beginning of 
class  

• Homework must be organized, legible 
(messy is not), and stapled to be 
graded 

Administrative Notes 
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• Complement: variable with a bar over it 
    A, B, C 
• Literal: variable or its complement 
    A, A, B, B, C, C 
• Implicant: product of literals 
    ABC, AC, BC 
• Minterm: product that includes all input 

variables 
    ABC, ABC, ABC 
• Maxterm: sum that includes all input variables 
    (A+B+C), (A+B+C), (A+B+C) 

Some Definitions 
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• All equations can be written in SOP form 

• Each row has a minterm 

• A minterm is a product (AND) of literals 

• Each minterm is TRUE for that row (and only that row) 
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Canonical Sum-of-Products (SOP) Form 
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Y = F(A, B) = 

• All equations can be written in SOP form 

• Each row has a minterm 

• A minterm is a product (AND) of literals 

• Each minterm is TRUE for that row (and only that row) 

• Form function by ORing minterms where the output is TRUE  
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Canonical Sum-of-Products (SOP) Form 
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Y = F(A, B) = AB + AB = Σ(m1, m3) 

Canonical Sum-of-Products (SOP) Form 

• All equations can be written in SOP form 

• Each row has a minterm 

• A minterm is a product (AND) of literals 

• Each minterm is TRUE for that row (and only that row) 

• Form function by ORing minterms where the output is TRUE  

• Thus, a sum (OR) of products (AND terms) 
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Y = F(A, B) = 

SOP Example 

• Steps: 

• Find minterms that result in Y=1 

• Sum “TRUE” minterms 

A B Y 

0 0 1 

0 1 1 

1 0 0 

1 1 0 
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Aside: Precedence 

• AND has precedence over OR 

• In other words: 

• AND is performed before OR 

 

• Example: 

• 𝑌 = 𝐴 ⋅ 𝐵 + 𝐴 ⋅ 𝐵 

• Equivalent to: 

• 𝑌 = 𝐴 𝐵 + (𝐴𝐵) 
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• All Boolean equations can be written in POS form 

• Each row has a maxterm 

• A maxterm is a sum (OR) of literals 

• Each maxterm is FALSE for that row (and only that row) 

Canonical Product-of-Sums (POS) Form 
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• All Boolean equations can be written in POS form 

• Each row has a maxterm 

• A maxterm is a sum (OR) of literals 

• Each maxterm is FALSE for that row (and only that row) 

• Form function by ANDing the maxterms for which the 

output is FALSE 

• Thus, a product (AND) of sums (OR terms) 

Canonical Product-of-Sums (POS) Form 
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𝑌 = 𝑀0 ⋅ 𝑀2 = 𝐴 + 𝐵 ⋅ (𝐴 + 𝐵) 



Chapter 2 <18>  

• Sum of Products (SOP) 

• Implement the “ones” of the output 

• Sum all “one” terms  OR results in “one” 

 

• Product of Sums (POS) 

• Implement the “zeros” of the output 

• Multiply “zero” terms  AND results in “zero” 

SOP and POS Comparison 
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• You are going to the cafeteria for lunch 

– You will eat lunch (E=1)  

– If it’s open (O=1) and 

– If they’re not serving corndogs (C=0) 

• Write a truth table for determining if you 
will eat lunch (E). 

O C E

0 0

0 1

1 0

1 1

Boolean Equations Example 
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• You are going to the cafeteria for lunch 

– You will eat lunch (E=1)  

– If it’s open (O=1) and 

– If they’re not serving corndogs (C=0) 

• Write a truth table for determining if you 
will eat lunch (E). 

O C E

0 0

0 1

1 0

1 1
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0
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Boolean Equations Example 
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• SOP – sum-of-products 

 

 

 

 

 

• POS – product-of-sums 
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• SOP – sum-of-products 

 

 

 

 

 

• POS – product-of-sums 
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• SOP – sum-of-products 

 

 

 

 

 

• POS – product-of-sums 
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SOP & POS Form 
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• SOP – sum-of-products 

 

 

 

 

 

• POS – product-of-sums 
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SOP & POS Form 
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• Axioms and theorems to simplify Boolean 
equations 

• Like regular algebra, but simpler: variables 
have only two values (1 or 0) 

• Duality in axioms and theorems: 
– ANDs and ORs, 0’s and 1’s interchanged 

Boolean Algebra 
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Boolean Axioms 
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Duality in Boolean axioms and theorems: 
– ANDs and ORs, 0’s and 1’s interchanged 

Duality 
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Boolean Axioms 
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Boolean Axioms 

Dual:  Exchange: • and +  
     0 and 1 
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Boolean Axioms 

Dual:  Exchange: • and +  
     0 and 1 
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Basic Boolean Theorems 

B = B 
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Basic Boolean Theorems: Duals 

Dual:  Exchange: • and +  
     0 and 1 
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• B    1 = B 

• B + 0 = B 

T1: Identity Theorem 
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1 =

=

B

0
B

B

B

• B    1 = B 

• B + 0 = B 

T1: Identity Theorem 
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• Simplification of digital logic  connecting 

wires with a on/off switch 

• X = 0 (switch open) 

• X = 1 (switch closed) 

Switching Algebra 
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• Switching circuit in series performs AND 

 

 

 

 

 

• 1 is connected to 2 iff A AND B are 1 

Series Switching Network: AND 
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• Switching circuit in parallel performs OR 

 

 

 

 

 

• 1 is connected to 2 if A OR B is 1 

Parallel Switching Network: OR 
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1 =

=

B

0
B
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• B    1 = B 

• B + 0 = B 

T1: Identity Theorem 
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• B    0 = 0 

• B + 1 = 1 

T2: Null Element Theorem 
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0 =

=

B

1
B
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0

• B    0 = 0 

• B + 1 = 1 

T2: Null Element Theorem 
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• B    B = B 

• B + B = B 

T3: Idempotency Theorem 
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B =

=

B
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• B    B = B 

• B + B = B 

T3: Idempotency Theorem 
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• B = B 

T4: Involution Theorem 
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= BB

• B = B 

T4: Involution Theorem 
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• B    B = 0 

• B + B = 1 

T5: Complements Theorem 
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B =

=

B

B
B

1

0

• B    B = 0 

• B + B = 1 

T5: Complements Theorem 
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Recap: Basic Boolean Theorems 



Chapter 2 <48>  

Boolean Theorems of Several Vars 

Number Theorem Name 

T6 B•C = C•B Commutativity 

T7 (B•C) • D = B • (C • D) Associativity 

T8 B • (C + D) = (B•C) + (B•D) Distributivity 

T9 B• (B+C) = B Covering 

T10 (B•C) + (B•C) = B Combining 

T11 B•C + (B•D) + (C•D) = 
B•C + B•D 

Consensus 



Chapter 2 <49>  

Boolean Theorems of Several Vars 

Number Theorem Name 

T6 B•C = C•B Commutativity 

T7 (B•C) • D = B • (C • D) Associativity 

T8 B • (C + D) = (B•C) + (B•D) Distributivity 

T9 B• (B+C) = B Covering 

T10 (B•C) + (B•C) = B Combining 

T11 B•C + (B•D) + (C•D) = 
B•C + B•D 

Consensus 

How do we prove these are true? 
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How to Prove Boolean Relation  

• Method 1: Perfect induction 

• Method 2: Use other theorems and axioms 

to simplify the equation 

• Make one side of the equation look like 

the other 
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Proof by Perfect Induction 

• Also called: proof by exhaustion 

• Check every possible input value 

• If two expressions produce the same value 

for every possible input combination, the 

expressions are equal 
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Example: Proof by Perfect Induction 

Number Theorem Name 

T6 B•C = C•B Commutativity 

0         0 
0         1 
1         0 
1         1 

B         C          BC    CB 
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Example: Proof by Perfect Induction 

Number Theorem Name 

T6 B•C = C•B Commutativity 

0         0 
0         1 
1         0 
1         1 

B         C          BC    CB 

0         0 
0         0 
0         0 
1         1 
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Boolean Theorems of Several Vars 

Number Theorem Name 

T6 B•C = C•B Commutativity 

T7 (B•C) • D = B • (C • D) Associativity 

T8 B • (C + D) = (B•C) + (B•D) Distributivity 

T9 B• (B+C) = B Covering 

T10 (B•C) + (B•C) = B Combining 

T11 B•C + (B•D) + (C•D) = 
B•C + B•D 

Consensus 
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T7: Associativity 

Number Theorem Name 

T7 (B•C) • D = B • (C • D) Associativity 
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T8: Distributivity 

Number Theorem Name 

T8 B • (C + D) = (B•C) + (B•D) Distributivity 
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T9: Covering 

Number Theorem Name 

T9 B• (B+C) = B Covering 
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T9: Covering 

Number Theorem Name 

T9 B• (B+C) = B Covering 

Prove true by: 

• Method 1: Perfect induction 

• Method 2: Using other theorems and axioms 
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T9: Covering 

Number Theorem Name 

T9 B• (B+C) = B Covering 

0         0 
0         1 
1         0 
1         1 

B         C          (B+C)      B(B+C) 

Method 1: Perfect Induction 
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T9: Covering 

Number Theorem Name 

T9 B• (B+C) = B Covering 

Method 1: Perfect Induction 

0         0 
0         1 
1         0 
1         1 

B         C          (B+C)      B(B+C) 

0          0 
1          0 
1          1 
1          1 
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T9: Covering 

Number Theorem Name 

T9 B• (B+C) = B Covering 

Method 2: Prove true using other axioms and 

theorems. 



Chapter 2 <62>  

T9: Covering 

Number Theorem Name 

T9 B• (B+C) = B Covering 

Method 2: Prove true using other axioms and 

theorems. 

B•(B+C) = B•B + B•C T8: Distributivity 

  = B + B•C  T3: Idempotency 

  = B•(1 + C) T8: Distributivity 

  = B•(1)  T2: Null element 

  = B   T1: Identity 
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T10: Combining 

Number Theorem Name 

T10 (B•C) + (B•C) = B Combining 

Prove true using other axioms and theorems: 
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T10: Combining 

Number Theorem Name 

T10 (B•C) + (B•C) = B Combining 

Prove true using other axioms and theorems: 

   B•C + B•C = B•(C+C)   T8: Distributivity 

   = B•(1)     T5’: Complements 

   = B     T1: Identity 
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T11: Consensus 

Number Theorem Name 

T11 (B•C) + (B•D) + (C•D) = 
(B•C) + B•D 

Consensus 

Prove true using (1) perfect induction or (2) other axioms and 

theorems. 
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Recap: Boolean Thms of Several Vars 

Number Theorem Name 

T6 B•C = C•B Commutativity 

T7 (B•C) • D = B • (C • D) Associativity 

T8 B • (C + D) = (B•C) + (B•D) Distributivity 

T9 B• (B+C) = B Covering 

T10 (B•C) + (B•C) = B Combining 

T11 B•C + (B•D) + (C•D) = 
B•C + B•D 

Consensus 
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Boolean Thms of Several Vars: Duals 

# Theorem Dual Name 

T6 B•C = C•B B+C = C+B Commutativity 

T7 (B•C) • D = B • (C•D) (B + C) + D = B + (C + D) Associativity 

T8 B • (C + D) = (B•C) + (B•D) B + (C•D) = (B+C) (B+D) Distributivity 

T9 B • (B+C) = B B + (B•C) = B Covering 

T10 (B•C) + (B•C) = B (B+C) • (B+C) = B Combining 

T11 (B•C) + (B•D) + (C•D) = 
(B•C) + (B•D) 

(B+C) • (B+D) • (C+D) = 
(B+C) • (B+D) 

Consensus 

Dual:  Replace: • with +  
     0 with 1 
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Boolean Thms of Several Vars: Duals 

# Theorem Dual Name 

T6 B•C = C•B B+C = C+B Commutativity 

T7 (B•C) • D = B • (C•D) (B + C) + D = B + (C + D) Associativity 

T8 B • (C + D) = (B•C) + (B•D) B + (C•D) = (B+C) (B+D) Distributivity 

T9 B • (B+C) = B B + (B•C) = B Covering 

T10 (B•C) + (B•C) = B (B+C) • (B+C) = B Combining 

T11 (B•C) + (B•D) + (C•D) = 
(B•C) + (B•D) 

(B+C) • (B+D) • (C+D) = 
(B+C) • (B+D) 

Consensus 

Dual:  Replace: • with +  
     0 with 1 

Warning: T8’ differs from traditional algebra: OR (+) distributes over AND (•) 
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Boolean Thms of Several Vars: Duals 

# Theorem Dual Name 

T6 B•C = C•B B+C = C+B Commutativity 

T7 (B•C) • D = B • (C•D) (B + C) + D = B + (C + D) Associativity 

T8 B • (C + D) = (B•C) + (B•D) B + (C•D) = (B+C) (B+D) Distributivity 

T9 B • (B+C) = B B + (B•C) = B Covering 

T10 (B•C) + (B•C) = B (B+C) • (B+C) = B Combining 

T11 (B•C) + (B•D) + (C•D) = 
(B•C) + (B•D) 

(B+C) • (B+D) • (C+D) = 
(B+C) • (B+D) 

Consensus 

Axioms and theorems are useful for simplifying equations. 


