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Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu
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Background: Digital Logic Design

 How have digital devices changed the world?
* How have digital devices changed your life?




Background

* Digital Devices have revolutionized our world
* Internet, cell phones, rapid advances in medicine, etc.

e The semiconductor industry has grown from $21
billion in 1985 to over $300 billion in 2015
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The Game Plan

* Purpose of course:
* Learn the principles of digital design

e Learn to systematically debug increasingly
complex designs
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The Digital Abstraction
Number Systems
Addition

Binary Codes

Signed Numbers

Logic Gates

Logic Levels

CMOS Transistors
Power Consumption
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Chapter 1: Topics

* The Art of Managing Complexity
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The Art of Managing Complexity

e Abstraction

* Discipline

* The Three —y’s

* Hierarchy
 Modularity

* Regularity

FROM ZERO TO ONE

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 1 <6>



Abstraction

O e What is abstraction? Application [>"netio] | oorams
l Software |world!”
Oé)erating @ device drivers
. e . ystems
O‘ * Hiding details when - -
. . EEEE | INnstructions
- they are not important A | registers
% Micro- g datapaths
| 3 architecture |:|<—>|:| controllers
M § Logic ?ndednir)sries
N * Electronic computer g — R
H Circuit NOT gat
abstraction i weits oD gates
] . Analgg amplifiers
E * Different levels with Circuits 31??0 filters
O| different building blocks Cimtene @ ransisors
l10a0es
mﬂ Physics % electrons

A |
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* Intentionally restrict design choices
« Example: Digital discipline
— Discrete voltages (0 V, 5 V) instead of continuous
(0V —-5V)
— Simpler to design than analog circuits — can build
more sophisticated systems

— Digital systems replacing analog predecessors:

* |.e., digital cameras, digital television, cell phones,
CDs

FROM ZERO TO ONE
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The Three —y’s

* Hierarchy
A system divided into modules and submodules

* Modularity
« Having well-defined functions and interfaces

* Regularity

« Encouraging uniformity, so modules can be easily
reused

FROM ZERO TO ONE
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* Hierarchy

' * Three main modules:
' Lock, stock, and barrel

| Hammer, flint, frizzen,
| etc.
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8' + Submodules of lock:
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Example: Flintlock Rifle
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Example Flintlock Rifle

O‘  Modularity

* Function of stock:

O‘ mount barrel and lock
- * Interface of stock: [
O' length and location of

| mounting pins

‘ . ‘ ~“:5  . » 4 ‘i i
* Regularity

=

-

N _
E: * Interchangeable parts ,
>

RS

Pan Frizzen Spring

Trigger
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The Art of Managing Complexity

e Abstraction

* Discipline

* The Three —y’s

* Hierarchy
 Modularity

* Regularity

FROM ZERO TO ONE
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The Digital Abstraction

* Most physical variables are continuous
* Voltage on a wire (1.33V,9V, 12.2 V)

* Frequency of an oscillation (60 Hz, 33.3 Hz, 44.1
kHz)

* Position of mass (0.25 m, 3.2 m)

* Digital abstraction considers discrete subset
of values
*0V,5V
.« “0” “1”

FROM ZERO TO ONE
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* Desighed by Charles
Babbage from 1834 —
1871

* Considered to be the
first digital computer

Built from mechanical
gears, where each gear
represented a discrete
value (0-9)

* Babbage died before it
was finished

FROM ZERO TO ONE
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The Analytical Engine
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Digital Discipline: Binary Values

e Two discrete values

e 1andO
* 1=TRUE =HIGH =0ON
* 0 =FALSE = LOW = OFF
* How to represent 1 and O
e Voltage levels, rotating gears, fluid levels, etc.

* Digital circuits use voltage levels to represent
1andO
* Bit = binary digit
* Represents the status of a digital signal (2 values)

FROM ZERO TO ONE
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* Easier to design

 Fast

e Can overcome noise

* Error detection/correction

FROM ZERO TO ONE
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George Boole, 1815-1864

* Born to working class parents

e Taught himself mathematics
and joined the faculty of
Queen’s College in Ireland

* Wrote An Investigation of the
Laws of Thought (1854)

* Introduced binary variables

* Introduced the three
fundamental logic operations:
AND, OR, and NOT

FROM ZERO TO ONE
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Number Systems

e Decimal
e Base 10

* Binary

e Base 2

e Hexadecimal
e Base 16

FROM ZERO TO ONE
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Decimal Numbers

e Base 10 (our everyday number system)

uwin|o) s,000T
uwn|o) s,00T
uwn|o) s,01
uwn|od s,

5374, =5x10°+3x10%+7 x 10! + 4 x 10°
/‘\

Five Three Seven Four
Thousand Hundred Tens Ones

Base 10
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Binary Numbers

e Base 2 (computer number system)

0 &N R
nmv unu u u
OO OO0
oo oo
CcC C C C
3 3 3 3
>0 O O O

1101, =1x234+1x224+0x21+1x2°

ﬂ\ One One Zero One
Eight Four Two One

Base 2




. 20—
. 2L =
. 22—
. 23 =
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28 =

29 =

210 =
211 —
212 —
713 —
214 —

715 —
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|

ml
S . 20=1 . 28 =256
e 21=72 .« 29 =512

E‘ . 2224 . 210 =1024
O‘ ¢« 23=8 o 211 =2048
o - 2¢=16 . 212 = 4096
W . 25=32 . 213=8192
; . 26=64 . 214=16384

< . 27=128 . 215=32768
8‘ « Handy to memorize up to 210
Ty
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Bits, Bytes, Nibbles ...

hw

=
Q

=
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e Bits

* Bytes = 8 bits
* Nibble =4 bits

e Words = 32 bits

* Hex digit to
represent nibble

10010110

most least
significant significant
bit bit
byte

10010110

nlbble

CEBF9AD7

most least
significant significant
byte byte

ELSEVIER
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Decimal to Binary Conversion

e Two Methods:

 Method 1: Find largest power of 2 that fits,
subtract and repeat

* Method 2: Repeatedly divide by 2, remainder
goes in next most significant bit
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D2B: Method 1

* Find largest power of 2 that fits, subtract,
repeat




D2B: Method 1

* Find largest power of 2 that fits, subtract,
repeat

534, 32x1
53-32=21 16x1
21-16=5  4x1
5-4 =1 1x1

= 110101,

FROM ZERO TO ONE
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FROM ZERO TO ONE
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D2B: Method 2

* Repeatedly divide by 2, remainder goes in
next most significant bit




D2B: Method 2

O Repeatedly divide by 2, remainder goes in
next most significant bit

Ml 5310 - 53/2 =26 R1 LSB
Qo 26/2 = 13 RO

Cc 13/2=6 R1

L

N 6/2 =3 RO

E: 3/2 =1 R1

O' 1/2 =0 R1 MSB
E = 110101,
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FROM ZERO TO ONE

Number Conversion

* Binary to decimal conversion
* Convert 10011, to decimal

16 X1+8X0+4X0+2X1+1X1=19

* Decimal to binary conversion
* Convert 474, to binary

32X1+16x0+8x1+4x1+2%x1+1x%x1=101111,

L EAEN ) -_‘."}:
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D2B Example

» Convert 75,4 to binary

FROM ZERO TO ONE
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D2B Example

» Convert 75,4 to binary

75,,=64+8+2+1=1001011,

 Or 75/2 =37 RI1
37/2 =18 Rl
18/2 =9 RO
9/2 =4 RI1
4/2 =2 RO
2/2 =1 RO
1/2 = R1

FROM ZERO TO ONE
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Binary Values and Range

* N-digit decimal number

* How many values?

* Range?

e Example:
3-digit decimal number

* Possible values

* Range

FROM ZERO TO ONE
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Binary Values and Range

O * N-digit decimal number

* How many values?

Ol « 10V
- e Range?

' . [0,10 — 1]

QO

o

L) ¢ Example:

N 3-digit decimal number
§: * Possible values

O 103 = 1000

' * Range

E' « [0,999]
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Binary Values and Range

e N-bit binary number

* How many values?

* Range?

e Example:
3-bit binary number

* Possible values

* Range

FROM ZERO TO ONE
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Binary Values and Range

O e N-bit binary number

* How many values?

e} . 2V
- e Range?

' . [0,2N — 1]

QO

o

L) ¢ Example:

NI 3-bit binary number
§: * Possible values

O « 23=8

' * Range

E' . [0,7] = [000,,111,]
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Binary Values and Range

* N-digit decimal number

<

g‘ * How many values?
‘ « 10V

o

* Range?
Ot  [0,10N — 1]
E  Example:
N‘ 3-digit decimal number
| * Possible values
E: « 103 = 1000

O * Range

l
o » [0,999]
ol

© Digital Design and Computer Architecture, 2" Edition, 2012

* N-bit binary number
* How many values?
« 2N
 Range?
 [0,2N —1]

 Example:
3-bit binary number
* Possible values
« 23=8
* Range

° [O, 7] — [0002, 1112]

Chapter 1 <36>
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Hexadecimal Numbers

* Base 16 number system

e Shorthand for binary

* Four binary digits (4-bit binary number) is a
single hex digit

FROM ZERO TO ONE
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Hexadecimal Numbers

Hex Digit Decimal Equivalent Binary Equivalent
01 0 0
1 1
Qo z z
M. 3 3
4 4
Q : :
m- 6 6
“.I' 7 7
| 8 8
NI ; ;
' A 10
§: B 11
O‘ C 12
| D 13
MI E 14
M. F 15
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Hexadecimal Numbers

Hex Digit Decimal Equivalent Binary Equivalent
01 0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
15 1111

Ol |IN|O|JO|PP|WO[IN|FL,|O

=
o

|
|

=
N

=
w
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AN
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FROM ZERO TO ONE

Hexadecimal to Binary Conversion

* Hexadecimal to binary conversion:
* Convert 4AF 4 (also written Ox4AF) to binary

e Hexadecimal to decimal conversion:
e Convert Ox4AF to decimal

ENC

5 -)"E

PTG
i
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Hexadecimal to Binary Conversion

* Hexadecimal to binary conversion:

* Convert 4AF 4 (also written Ox4AF) to binary
* Ox4AF =010010101111,

e Hexadecimal to decimal conversion:

e Convert Ox4AF to decimal
e 4 x16%2+10x 16+ 15 x 16" = 11994,

FROM ZERO TO ONE

A St Ny e
N =
G ;
3 HAg’
A
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Number Systems

'-ZLII

O‘ * Popular

O‘ e Decimal Base 10
— * Binary Base 2
O‘ e Hexadecimal Base 16
E:J:

N: e Others

§- e Qctal Base 8

' * Any other base

QO

<

Ll
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Octal Numbers

o Same as hex with one less binary digit

M' Octal Digit Decimal Equivalent Binary Equivalent

0 0 000
O‘ 1 1 001
m: 2 2 010
“-" 3 3 011
Nl 4 4 100
5 5 101
§: 6 6 110
' 7 7 111
>
I
ke
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W Number Systems

* |n general, an N-digit number
fay_1ay_o ...aq1aq} of base R in decimal
equals

¢ aN_lRN_l + aN_ZRN_Z + + a1R1 + aoRO

-~ « Example: 4-digit {5173} of base 8 (octal)

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 1 <44>
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Number Systems

* |n general, an N-digit number
fay_1ay_o ...aq1aq} of base R in decimal
equals

¢ aN_lRN_l + aN_ZRN_Z + + a1R1 + aoRO

* Example: 4-digit {5173} of base 8 (octal)
« 5x83+1x82+7x8!+3x8°=2683,




Decimal to Octal Conversion

e Remember two methods for D2B conversion

* 1: remove largest multiple; 2: repeated divide

* Convert 294, to octal

FROM ZERO TO ONE
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Decimal to Octal Conversion

O‘ * Remember two methods for D2B conversion
O * 1: remove largest multiple; 2: repeated divide
l

b= * Convert 29, to octal
QO ° Method 2

| 29/8 =3 R5 Isb
| 3/8 =0 R3 msb

<
Ly
N
g 29,, = 354
o

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <47>



- FROM ZERO TO ONE

Decimal to Octal Conversion

e Remember two methods for D2B conversion

* 1: remove largest multiple; 2: repeated divide
* Convert 294, to octal
* Method 1

29 8X3=24
29-24=5

2910 =24 +5=3x8"+5x8% =354
* Or (better scalability)
2910 =16+8+4+1=11101, = 355 M%

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 1 <48> ELSEVIER



Octal to Decimal Conversion

* Convert 1634 to decimal

FROM ZERO TO ONE
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Octal to Decimal Conversion

* Convert 1634 to decimal

¢+ 163, =1x82+6x 8! +3
* 1633 =64 +48+ 3
¢ 1638=11510

FROM ZERO TO ONE
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Recap: Binary and Hex Numbers

* Example 1: Convert 83, to hex

* Example 2: Convert 01101011, to hex and decimal

 Example 3: Convert 0xCA3 to binary and decimal

FROM ZERO TO ONE
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Recap: Binary and Hex Numbers

* Example 1: Convert 83, to hex
© 83,,=64+16+24+1=1010011,
+ 1010011, = 1010011, = 534

* Example 2: Convert 01101011, to hex and decimal
« 01101011, = 0110 1011, = 6By,
e 0X6B=6 x 161 + 11 x16° =96 + 11 = 107

 Example 3: Convert 0xCA3 to binary and decimal
* OxCA3=110010100011,
* O0XxCA3 =12 x 16* + 10 X 16" + 3 X 16° = 3235, g0

.
o

- J‘gl.f
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W Large Powers of Two

« 210=1kilo -1000 (1024)

e 220=1 mega -1 million (1,048,576)

e 230=1giga =1 billion(1,073,741,824)

. ¢ 290=1tera =1trillion(1,099,511,627,776)
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Large Powers of Two: Abbreviations

E' e 219=1kilo ~1000 (1024)

O‘ for example: 1 kB =1024 Bytes

— 1 kb = 1024 bits

o

E e 220=1mega -1 million (1,048,576)
N} for example: 1 MiB, 1 Mib (1 megabit)

Q) - 2¥=1giga -1billion(1,073,741,824)
& for example: 1 GiB, 1 Gib
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Estimating Powers of Two

* What is the value of 224?

* How many values can a 32-bit variable
represent?
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Estimating Powers of Two

* What is the value of 224?

e 24 x 220 = 16 million

* How many values can a 32-bit variable
represent?

e 22 x 230 = 4 billion

FROM ZERO TO ONE
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Binary Codes

Another way of representing decimal numbers

Example binary codes:

* Weighted codes
* Binary Coded Decimal (BCD) (8-4-2-1 code)
* 6-3-1-1 code
e 8-4-2-1 code (simple binary)

* Gray codes

* Excess-3 code

e 2-out-of-5 code

FROM ZERO TO ONE
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Binary Codes

Decimal # | 8-4-2-1 Gray
(BCD)

0 0000 0000 0011 00011 0000
1 0001 0001 0100 00101 0001
2 0010 0011 0101 00110 0011
3 0011 0100 0110 01001 0010
4 0100 0101 0111 01010 0110
5 0101 0111 1000 01100 1110
6 0110 1000 1001 10001 1010
7 0111 1001 1010 10010 1011
8 1000 1011 1011 10100 1001
9 1001 1100 1100 11000 1000

FROM ZERO TO ONE

Each code combination represents a single decimal digit.

S ‘\.-": 2
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Weighted Codes

* Weighted codes: each bit position has a given
weight
* Binary Coded Decimal (BCD) (8-4-2-1 code)
* Example: 726,,=0111 0010 0110g.,
* 6-3-1-1 code
 Example: 1001 (6-3-1-1 code) = 1x6 + 0x3 + Ox1 + 1x1
* Example: 726,,=1001 0011 1000.,,,
 BCD numbers are used to represent fractional
numbers exactly (vs. floating point numbers —
which can’t - see Chapter 5)

FROM ZERO TO ONE
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Weighted Codes

Decimal# | 8-4-2-1 | 6-3-1-1
(BCD)

0 0000 0000

OI . o oo * BCD Example:
726,,=0111 0010 0110,

2 0010 0011

O‘ 3 0011 0100

E' p S - * 6-3-1-1 code Example:

'\l: i T 726,, = 1001 0011 1000,
, 6 0110 1000

§: 7 0111 1001

O‘ 8 1000 1011

E: 9 1001 1100

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 1 <60>



Excess-3 Code

< COMEIEN - Add 3 torumben thr
O‘ 0011 represent in binary
O| 1 0100  Example:5,,=5+3=8=
—_ 1000,

? oot * Also called a biased
O‘ 3 0110 number
c 4 0111 * Excess-3 codes (also
Ly 5 1000 called XS-3) were used in
N . 1001 the 1970’ to ease
E arithmetic

7 1010
O‘ S oL * Excess-3 Example:
m 9 1100 _
™ 726,,= 1010 0101 1001,

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <61> ELSEVR



| 2-out-of-5 Code

' Decimal # ° 1
| -m 2 out of the 5 bits

0 00011 are 1
' 1 00101
' 2 00110
. 3 01001 * Used for error
4 01010 detection:
| 5 01100
| 6 10001 e If more or less than 2
| 7 10010 of 5 bits are 1, error
' 8 10100
9 11000

‘ iﬁn‘
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Gray Codes

0
1
2

O 00 N O

FROM ZERO TO ONE

© Digital Design and Computer Architecture, 2" Edition, 2012

0000
0001
0011
0010
0110
1110
1010
1011
1001
1000

* Next number differs in
only one bit position
 Example: 000, 001, 011,
010, 110, 111, 101, 100
* Example use: Analog-
to-Digital (A/D)
converters. Changing 2
bits at a time (i.e., 011
—>100) could cause
large inaccuracies.
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.

(
e Decimal

3734
+ 5168

* Binary

1011
+ 0011

FROM ZERO TO ONE
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e Decimal

11 < carries
3734
+ 5168

8902

* Binary

1011
+ 0011

FROM ZERO TO ONE
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e Decimal

11 < carries
3734
+ 5168

8902

* Binary

11 < carries

1011
+ 0011

1110

FROM ZERO TO ONE
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W Binary Addition Examples

 Add the following 4-bit
binary numbers 1001

' + 0101

.+ Add the following 4-bit
| binary numbers 1011

: + 0110
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W Binary Addition Examples

 Add the following 4-bit 1
binary numbers 1001
| + 0101
1110

.+ Add the following 4-bit
| binary numbers 1011

+ 0110
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W Binary Addition Examples

L

8'  Add the following 4-bit 1
binary numbers 1001

o + 0101

oy

o 1110

< . .

L)+ Add the following 4-bit 111

N binary numbers 1011

§: + 0110

O, 10001

El Overflow!
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FROM ZERO TO ONE
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 Digital systems operate on a fixed number of
bits

» Overflow: when result is too big to fit in the
available number of bits

» See previous example of 11 + 6




Signed Binary Numbers

 Sign/Magnitude Numbers
* Two’s Complement Numbers

FROM ZERO TO ONE
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FROM ZERO TO ONE
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Sign/Magnitude

1 sign bit, N-1 magnitude bits
 Sign bit is the most significant (left-most) bit

— Positive number: signbit=0 A- {aN_l’ ay_,,+a,,4a,, ao}
— Negative number: sign bit =1

A= (=1)* nz_zlai 2!
=0

« Example, 4-bit sign/magnitude representations of + 6:

» Range of an N-bit sign/magnitude number:




FROM ZERO TO ONE
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Sign/Magnitude

1 sign bit, N-1 magnitude bits
 Sign bit is the most significant (left-most) bit

— Positive number: signbit=0 A- {aN_l’ ay_,,+a,,4a,, ao}
— Negative number: sign bit =1

A= (=1)* nz_zlai 2!
=0

« Example, 4-bit sign/magnitude representations of + 6:
e +6=0110
e« -6=1110

» Range of an N-bit sign/magnitude number:
o [-(2N-1-1), 2N-1-1]




Sign/Magnitude Numbers

o Problems:
O‘  Addition doesn’t work, for example -6 + 6:

- 1110
1 + 0110

>

m -
NI * Two representations of 0 (+ 0):
§' o (+0) =

O * (—0) =

=
e

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 1 <74>




Sign/Magnitude Numbers

 Problems:
 Addition doesn’t work, for example -6 + 6:

-

<

Qo

E 1110

@ + 0110

ﬁi 10100 (wrong!)
S

2

e

| * Two representations of 0 (x 0):
 (+0) = 0000
 (—0) = 1000

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 1 <75>




Two’s Complement Numbers

* Don’t have same problems as
sign/magnitude numbers:

 Addition works

e Single representation for 0

* Range of representable numbers not
symmetric

* One extra negative number

FROM ZERO TO ONE
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Two’s Complement Numbers

* msb has value of —2V-1

* The most significant bit still indicates the sign
(1 = negative, 0 = positive)

» Range of an N-bit two’s comp number?

* Most positive 4-bit number?
* Most negative 4-bit number?

FROM ZERO TO ONE
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Two’s Complement Numbers

* msb has value of —2V-1

* The most significant bit still indicates the sign
(1 = negative, 0 = positive)

» Range of an N-bit two’s comp number?
 [-(2FH), 2N - 1]

* Most positive 4-bit number? 0111

* Most negative 4-bit number? 1000

FROM ZERO TO ONE
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FROM ZERO TO ONE
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“Taking the Two’s Complement”

Flips the sign of a two’s complement
number

Method:

1. Invert the bits
2. Add1

Example: Flip the sign of 3,, = 0011,
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“Taking the Two’s Complement”

Flips the sign of a two’s complement
number

Method:

1. Invert the bits
2. Add1

Example: Flip the sign of 3,, = 0011,
1. 1100
2. + 1
1101 = -3,
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© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 1 <81>

Two’s Complement Examples

Take the two’s complement of 6,, = 0110,

What 1s the decimal value of the two’s
complement number 1001,?




FROM ZERO TO ONE
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Two’s Complement Examples

Take the two’s complement of 6,, = 0110,
1. 1001
2. + 1
1010, = -6,

What 1s the decimal value of the two’s

complement number 1001,?
1. 0110
2. + 1
0111, = 7,9, S0 1001, = -7,




Two’s Complement Addition

* Add 6 + (-6) using two’s complement
numbers

0110
+ 1010

* Add -2 + 3 using two’s complement numbers

1110
+ 0011

L
<
@
2
8
N
>
8&
Ty
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Two’s Complement Addition

* Add 6 + (-6) using two’s complement
numbers 111

L

<

o)

E' 0110
' + 1010

g 70000

N

>

8‘

Ty

* Add -2 + 3 using two’s complement numbers

1110
+ 0011
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Two’s Complement Addition

Add 6 + (-6) using two’s complement
numbers 111

0110
+ 1010
10000

Add -2 + 3 using two’s complement numbers

111
1110

+ 0011
10001

S A
SRRV AR
SN “31}\,]

g B
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Increasing Bit Width

* Extend number from N to M bits (M > N) :
* Sign-extension
* Zero-extension




Sign-Extension

* Sign bit copied to msb’s

e Number value is same

. * Example 1
; e 4-bit representation of 3 = 0011
| * 8-bit sign-extended value:
e Example 2
' * 4-bit representation of -7 = 1001

» 8-bit sign-extended value:

FROM ZERO TO ONE

N BN
% 3
A A

N l )'
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FROM ZERO TO ONE
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Sign-Extension

* Sign bit copied to msb’s
e Number value is same

e Example 1
e 4-bit representation of 3 = 0011
e 8-bit sign-extended value: 00000011
e Example 2
e 4-bit representation of -7 = 1001

» 8-bit sign-extended value: 11111001




/ero-Extension

E

e Zeros copied to msb’s

ON

0 * Value changes for negative numbers
o

Q- Example 1
<

w * 4-bit value = 0011,
N * 8-bit zero-extended value:

EI  Example 2

O. * 4-bit value = 1001
< * 8-bit zero-extended value:

F
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/ero-Extension

e Zeros copied to msb’s
* Value changes for negative numbers

e Example 1
* 4-bit value = 0011,
* 8-bit zero-extended value: 00000011
 Example 2
* 4-bit value = 1001

e 8-bit zero-extended value: 00001001
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© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <91>

/ero-Extension

e Zeros copied to msb’s
* Value changes for negative numbers

e Example 1
* 4-bit value = 0011, = 3,,
* 8-bit zero-extended value: 00000011 = 3,,
 Example 2
* 4-bit value = 1001 = -7,

* 8-bit zero-extended value: 00001001 =9,




Number System Comparison

Number System  Range

Unsigned 0, 2N-1]

E‘ Sign/Magnitude -(2V1-1), 2V-1]
' Two’s Complement -2N-1 2N-1-1]

- For example, 4-bit representation:.

rr»~ 1~ 1 _ 1 T T 1T T T T T T T T 1 T T T T T T T 1
Nl 84 v 6 5 4 3 2 -1 0 1 2 3 4 5 6 v 8 9 10 11 12 13 14 15

L Unsigned 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 . .
( 1111 1110 1101 1100 1011 1010 1001 1000 0001 0010 0011 0100 0101 0110 0111 S|gn/Magn|tude

O 1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 O111 Two's Complement
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Logic Gates

* Perform logic functions:
 inversion (NOT), AND, OR, NAND, NOR, etc.

* Single-input:

* NOT gate, buffer
* Two-input:

* AND, OR, XOR, NAND, NOR, XNOR
 Multiple-input




Y

FROM ZERO TO ONE
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Single-Input Logic Gates

BUF
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Single-Input Logic Gates

e Bubble on wire indicates inversion

| NOT BUF

1 AD&Y A{>Y
| Y=A Y=A

| AlY AlY
| 0 | 1 0 | 0
- 1| o 1|1

~ * Note: bar over variable indicates complement
| (invert value)
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AND

™ >
||
<

FROM ZERO TO ONE
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Two-Input Logic Gates

= O o>
—~ O o|
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AND

™ >
||
<

FROM ZERO TO ONE

( Y = AB

: A B|Y
| 0 0|0
| o 1| o0
. 1 0| o
- 101 |1
1

© Digital Design and Computer Architecture, 2™ Edition, 2012

Two-Input Logic Gates

OR
A
BIPA

Y=A+B
A B |Y
0 0o
0 1|1
1 0|1
1 1] 1
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More Two-lnput Logic Gates

‘ \an'
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More Two-lnput Logic Gates

o K~ o<
R o~ ol
o r <
o o o r|<L
R O O <

' \an'
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FROM ZERO TO ONE

Multiple-Input Logic Gates

Y = A+B+C Y = ABC
A B C Y A B ClY
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1
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Multiple-Input Logic Gates

el ReNeoNe] B>

HF PR PR OOO Ol
PR, ook ool
R oOoOror or ol
OO OO OO O RrIKL
PR OOoORr R ool
R O o or ol
PO OO OO o oO|L

FROM ZERO TO ONE

* Multi-input XOR = Odd parity (one for odd input=1)
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Logic Levels

O‘ * Discrete voltages represent 1 and O
o * For example:

- * 0 =ground (GND) or 0 volts

O' * 1=V,,or5volts

E e What about 4.99 volts? IsthataOoral?
|

N * What about 3.2 volts?

@)

<

L,
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Logic Levels

 Must have range of voltages for 1 and 0

* Different ranges for inputs and outputs to
allow for noise




* Anything that degrades the signal

e E.g., resistance, power supply noise, coupling to
neighboring wires, etc.

 Example: a gate (driver) outputs 5V but,
because of resistance in a long wire, receiver
gets4.5V
Noise

Driver \ Receiver

4| 5V 4.5v%

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <104>

FROM ZERO TO ONE




E

The Static Discipline

* With logically valid inputs, every circuit
element must produce logically valid outputs

e Use limited ranges of voltages to represent
discrete values

FROM ZERO TO ON
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Real Logic Levels

Driver Receiver

— >

* Want driver to output “clean” high/low and
receiver to handle noisy high/low

FROM ZERO TO ONE
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Real Logic Levels

Driver Receiver

— >

V

DD

Logic High
Output Range
V

OH

Logic Low
Output Range

GND

* Want driver to output “clean” high/
receiver to handle noisy high/low

FROM ZERO TO ONE
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Output Characteristics Input Characteristics

Logic High
Input Range

Logic Low
Input Range




Real Logic Levels

Driver Receiver
Output CharacteristicsV Input Characteristics
DD
LogicHigh A e EFEEEETETE A o
Output Range Logic High
Vv Input Range
OH
Forbidden
Zone
: v Logic Low
Logic Low Input Range

Output Range

GND

NMy = Vo = Vi

NML = VL = VoL
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Vpp Scaling

* In 1970’s and 1980's, V=5V

* V, has dropped
*33V,25V,18V,15V,1.2V,1.0V, ..

* Avoid frying tiny transistors
* Save power

* Be careful connecting chips with different
supply voltages

e Easy to fry if not careful




Logic Family Examples

© Digital Design and Computer Architecture, 2" Edition, 2012

Chapter 1 <110>

:
Ol —
O Logic Family |Vpp V. Vi VoL | Von

l

TTL 5(475-525) |08 |20 |04 |24

— ( )
) |cmos 5 (4.5 - 6) 135 |3.15 033 [3.84
& [LvTTL 33(3-36) |08 |20 |04 |24
Ly
NI [Lvemos [33(3-36) |09 |18 036 |27
Ll
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Transistors

* Logic gates built from transistors
* Simple model: 3-ported voltage-controlled
switch

e 2 ports connected depending on voltage of 3rd
 d and s are connected (ON) when gis 1

g=0 g=1
d d d
g%i $\ OFF i ON
S S S

--;k'}u.‘.',;._»-‘.f\_"_' ._:',}’:
SN 2
G >
3 HAg’
%)



Robert Noyce, 1927-1990

e Nicknamed “Mayor of
Silicon Valley”

e Cofounded Fairchild
Semiconductor 1n 1957

« Cofounded Intel In
1968

e Co-Invented the
Integrated circuit

FROM ZERO TO ONE
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Silicon

* Transistors built from silicon, a semiconductor
* Pure silicon is a poor conductor (no free charges)

* Doped silicon is a good conductor (free charges)
* n-type (free negative charges, electrons)
* p-type (free positive charges, holes)

Free electron Free hole
Si Si Si —Si—SilSi— —Si—Si+ --Si —
Si Si Si Si AS— S Si B Si
Si Si Si Si Si Si Si Si Si

FROM ZERO TO ONE

Silicon Lattice n-Type p-Type
P
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MOS Transistors

* Metal oxide silicon (MOS) transistors:
* Polysilicon (used to be metal) gate
e Oxide (silicon dioxide) insulator
e Doped silicon

source gate drain

gate

|

source 7 L drain

nMOS




NnMOS Transistors

* Gate=0 e Gate=1
* OFF (no connection * ON (channel between
between source and source and drain)
drain)
source drain source gate drain
o e 0 O TVDD O

Diode connection from p to n doped area
—> current cannot travel from n2>p

FROM ZERO TO ONE

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <115>



PMQOS Transistors

 pMOS transistor is opposite of nMOS
* ON when Gate=0
* OFF when Gate=1

source gate drain

Polysilicon O O

Sioz\

Note bubble on gate gate
_

to indicate on when low A _
source I L drain

FROM ZERO TO ONE
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Transistor Function

* Voltage controlled switch

FROM ZERO TO ONE

l g=0 g=1

' d d d

| nMOS gAE i\OFF i ON
: S S S

I

| S S

~ pMOS g [ i ON

; d d
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e nMOS: pass good 0’s

e Connect source to GND

e “Pull down” transistor

e pMOS: pass good 1’s

* Connect source to VDD

e “Pull up” transistor

FROM ZERO TO ONE
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Transistor Composition

* Build logic gates from
composition

e CMOS = complementary
MOS

iInputs

-

/

pMOS
pull-up

network

o

~

/

/
nMOS

pull-down
network

N

~

/

%
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CMOS Gate Structure

O‘ e Pull-up pMOS network
connects to /pp

-
E‘  Pull-down nMOS g oS A
network connects to pull-up

O' GND | network

, Inputs | J
< —— output
M‘ . 4 I
N ° Useseriesand parallel oS

. connections to pull-down

. network
E. implement gate logic L )

®] =
<
ol zthi'-r’
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CMOS Gates: NOT Gate

FROM ZERO TO ONE
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0 ON

OFF

CMOS Gates: NOT Gate

1 OFF

ON

FROM ZERO TO ONE
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CMOS Gates: NAND Gate
NAND

51 v — Epzﬂ P1

- oy
Y =AB A N1
A B|Y -
0 0 | 1 B N2
0 1 1

1 0|1 g7
1 1| o0
ABPL P2 NI N2 Y
010
0|1
110
11




CMOS Gates: NAND Gate
NAND

| A =
Sl #Epzﬁ }Pl

‘ L Y

. Y =AB A N1

A BJ|Y -

| 0 0|1 B N2

, 0 1|1

" 1 0 1 g7

| 1 1| o0

|

ON |OFF |OFF |ON
OFF |ON |ON |OFF
1{1(OFF |OFF |[ON |ON |0
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CMOS Gates: NOR Gate

* How can you build three input (4, B, C)NOR
gate?




gate?

A

CMOS Gates: NOR Gate

* How can you build three input (4, B, C)NOR

1

B

Q

Only high output when all

] three pMOS in series are
O “on” and create a path
] from output to Vpp

Q

O

N)

N

FROM ZERO TO ONE
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CMOS Gates: AND Gate

* How can you build 2 input AND gate?
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FROM ZERO TO ONE

CMOS Gates: AND Gate

* How can you build 2 input AND gate?

A —
B_ )()—‘ >0—Y

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 1 <127>




o
Z
N

FROM ZERO TO ONE

<]_I
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CMOS Gates: AND Gate

* How can you build 2 input AND gate?

A —
B_ )O—‘ >0—Y

VDD Note: AND requires 2
] more gates than NAND.

%1‘ EPZ—O P1 P1 Inverted logic is more
j, H__[ } Y efficient implementation.
N1

%

GND
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" Transmission Gates

* nMOS pass 1’s poorly, pMOS pass 0’s poorly

* Transmission gate is for passing signal
* Pass both 0 and 1 well

e When EN =1, the switch is ON: EN
« EN = 0andAisconnected to B 1

e When EN =0, the switch is OFF: A_T_ B
* Ais not connected to B EN

FROM ZERO TO ON
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<7

-

_ -
inputs

FROM ZERO TO ONE

N

nMOS
pull-down
network

~

J

%
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Psuedo-nMOQOS

* Replace pull-up network with weak pMOS
transistor that is always on

* pMOS gate tied to ground

e pMOS transistor: pulls output HIGH only
when nMOS network not pulling it LOW

Chapter 1 <130>




Psuedo-nMOS Example: NOR4

* How many transistors needed?

FROM ZERO TO ONE
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Psuedo-nMOS Example: NOR4

O ° How many transistors needed?
O  ° OnlySsinceasingle pMOSis used

O 1
5 v

; A%EB%EC%ED%E
o

&

Y

' NV
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e Cofounded Intel in
1968 with Robert
Noyce.

 Moore’s Law: number
of transistors on a
computer chip doubles
every year (observed in
1965)

* Since 1975, transistor

counts have doubled
every two years.

FROM ZERO TO ONE
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Gordon Moore, 1929-
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Moore’s Law

O‘ * Transistor count doubles every 2 years

Microprocessor Transistor Counts 1971-2011 & Moore's Law

16-Core SPARC T3
' Six-Core Core i7. J
2,600,000,000 Six-Core Xeon 74 UU\.\. @10-Core Xeon Westmere-EX

Dual-Core Itanium 2 @ S-codre PWE]_';g
e :c?’rrg ZaniL.lm Ukwila
I 1,000,000,0004 Pg’mDE;;oc\‘ g Core Heon ohae e
Itanium 2 with 9WE cache @ Six-Core Cpteron 2400
AND K Core i7 (Quad)
Core 2 Duo
Ianium2 @
O‘ 100,000,000
Fentium 4 @ Atom
I cuweghogl_s transistor
AMD KB
P £ 10,000,000] o yemang very < emun
o
ml o F'en1iurﬂ.ﬂ.’““:’Ks
O
| }%) 1,000,000
0
c
©
_
; —
100,000+
[
I
10,000+
[ 1
8005 @ T
ml 2,300-" 40048 Reazoz
! [ I T | 1
M 1971 1980 1990 2000 2011
I

Date of introduction ACIN
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Moore’s Law Trends

100
HUMAN
Jo BRAIN
ELECTROMECHANICAL SoLD- VACUUM  TRANSISTOR INTEGRATED CIRCUIT
STATE TUBE
o RELAY GPUs
MOUSE
CORE i7 QUAD BRAIN
10" ™
8 PENTIUM 4, @ T CORE2DUO
» PENTIUM Il ' -
x40 |- PENTIUM II ,
w
o COMPAQ QA
=] DESKPRO 386 ‘\ COMPUTING?
O10° = ~—
2 ALTAIR aaun ‘ PENTIUM
[ IBM 1130
w 10* =
IBM AT-80286
- DEC PDP-1
5 mu PC
£ 10t -
< UNIVACI Ec APPLE Il
3 PDP-10
4 0 1 [ 1 [ 1 L [ 1 [ 1 [ 1 [ 1 [ 1 1 [
S COLOSSUS
). IBM 704
102 = TABULATOR IBEM SSEC
HOLLERITH ./
TABULATOR
| 8‘ BELL
104 ’ NATIONAL CALCULATOR
ELLIS 3000 MODEL 1 © BCA Research 2013
ANALYTICAL ENGINE
= g = wn [} w =] w =] w =] w [~} w (=] ('] (=] wn (=] wn = wn (=] w (=] w
& 8 53 5 &8 8 8 8 & 2 & © & & 5 5 & 8 &8 &8 8 8 8 &5 8 8
- - - - - = - - - - - - - - - - - - - - N N ~ ™~ ~ ~

SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY", P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND
2012 REPRESENT BCA ESTIMATES.

*  “If the automobile had followed the same development cycle as the computer, a Rolls-Royce
would today cost 5100, get one million miles to the gallon, and explode once a year. ..”

— Robert Cringley

FROM ZERO TO ONE
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Power Consumption

 Power = Energy consumed per unit time

* Two types of power
* Dynamic power consumption
* Static power consumption

S :
&3
4
o) 4
. \);n'



Dynamic Power Consumption

 Power to charge transistor gate capacitances
* Energy required to charge a capacitance, C, to
Vop is CVip
* Circuit running at frequency f: transistors switch
(from 1 to O or vice versa) at that frequency

* Capacitor is charged f /2 times per second
(discharging from 1 to O is free)

* Dynamic power consumption

1
denamic — E CVlng

FROM ZERO TO ONE

-:-rr‘ ~ g...x\:-»,p:;;{‘;
R R Ay
s 4
\’;’!;,'
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Static Power Consumption

O‘  Power consumed when no gates are
switching

l=. ¢ Caused by the quiescent supply current, Ipp
@ (also called the leakage current)

5
N ° Static power consumption

' Pstatic = IppVpp ‘
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e Estimate the power
consumption of a
wireless handheld
computer

e V. DD = 1.2V
e C = 20nF
* f = 1GHz
e Ipp = 20mA

FROM ZERO TO ONE
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Power Consumption Example

* Total power is sum of
dynamic and static
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e Estimate the power
consumption of a
wireless handheld
computer

e V. DD = 1.2V
e C = 20nF
* f = 1GHz
e Ipp = 20mA

FROM ZERO TO ONE
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Power Consumption Example

* Total power is sum of

P

dynamic and static

1
= ECV%Df + IppVpp

= %(20 n)(1.2)*(1 G)

+ (20 m)(1.2)
= (14.4 + 0.024)W
=144 W
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