

Chapter 1

Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu http://www.ee.unlv.edu/~b1morris/cpe100/

CPE100: Digital Logic Design I

Section 1004: Dr. Morris

From Zero to One

Background: Digital Logic Design

- How have digital devices changed the world?
- How have digital devices changed your life?

Background

- Digital Devices have revolutionized our world
 - Internet, cell phones, rapid advances in medicine, etc.
- The semiconductor industry has grown from \$21 billion in 1985 to over \$300 billion in 2015

The Game Plan

- Purpose of course:
 - Learn the principles of digital design
 - Learn to systematically debug increasingly complex designs

ONE S

Chapter 1: Topics

- The Art of Managing Complexity
- The Digital Abstraction
- Number Systems
- Addition
- Binary Codes
- Signed Numbers
- Logic Gates
- Logic Levels
- CMOS Transistors
- Power Consumption

The Art of Managing Complexity

- Abstraction
- Discipline
- The Three –y's
 - Hierarchy
 - Modularity
 - Regularity

Abstraction

- What is abstraction?
 - Hiding details when they are not important

- Electronic computer abstraction
 - Different levels with different building blocks

Application >"hello programs Software world!" Operating device drivers Systems instructions Architecture registers datapaths Microcontrollers architecture adders Logic memories AND gates Digital Circuits NOT gates Analog amplifiers Circuits filters transistors **Devices** diodes **Physics** electrons

focus of this course

Discipline

- Intentionally restrict design choices
- Example: Digital discipline
 - Discrete voltages (0 V, 5 V) instead of continuous (0V – 5V)
 - Simpler to design than analog circuits can build more sophisticated systems
 - Digital systems replacing analog predecessors:
 - i.e., digital cameras, digital television, cell phones, CDs

The Three -y's

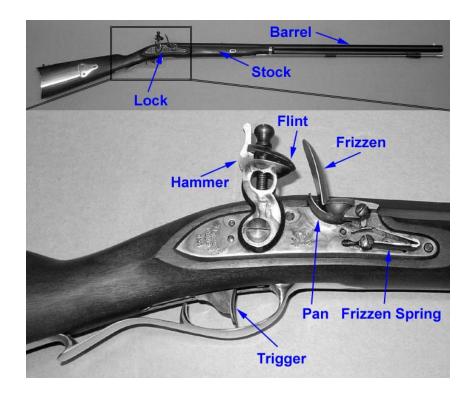
- Hierarchy
 - A system divided into modules and submodules

- Modularity
 - Having well-defined functions and interfaces

- Regularity
 - Encouraging uniformity, so modules can be easily reused

Example: Flintlock Rifle

- Hierarchy
 - Three main modules: Lock, stock, and barrel
 - Submodules of lock: Hammer, flint, frizzen, etc.

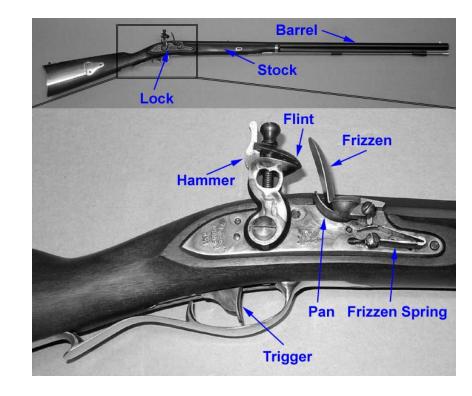


ONE ROM

Example Flintlock Rifle

- Modularity
 - Function of stock: mount barrel and lock
 - Interface of stock: length and location of mounting pins

- Regularity
 - Interchangeable parts



The Art of Managing Complexity

- Abstraction
- Discipline
- The Three –y's
 - Hierarchy
 - Modularity
 - Regularity

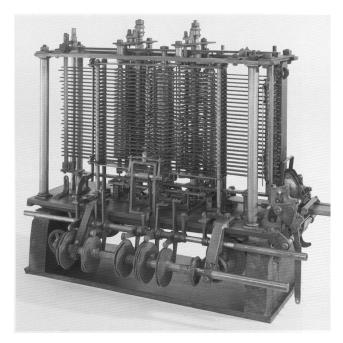
The Digital Abstraction

- Most physical variables are continuous
 - Voltage on a wire (1.33 V, 9 V, 12.2 V)
 - Frequency of an oscillation (60 Hz, 33.3 Hz, 44.1 kHz)
 - Position of mass (0.25 m, 3.2 m)
- Digital abstraction considers discrete subset of values
 - 0 V, 5 V
 - "0", "1"

The Analytical Engine

- Designed by Charles
 Babbage from 1834 –

 1871
- Considered to be the first digital computer
- Built from mechanical gears, where each gear represented a discrete value (0-9)
- Babbage died before it was finished



Chapter 1 <14>

Digital Discipline: Binary Values

- Two discrete values
 - 1 and 0
 - 1 = TRUE = HIGH = ON
 - 0 = FALSE = LOW = OFF
- How to represent 1 and 0
 - Voltage levels, rotating gears, fluid levels, etc.
- Digital circuits use voltage levels to represent
 1 and 0
 - Bit = binary digit
 - Represents the status of a digital signal (2 values)

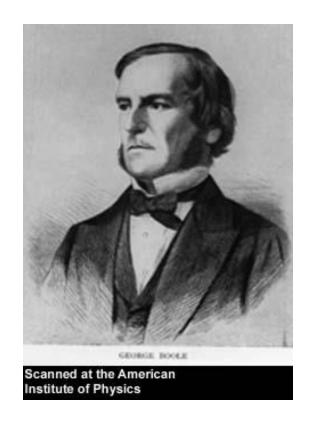
Why Digital Systems?

- Easier to design
- Fast
- Can overcome noise
- Error detection/correction

ONE ROM

George Boole, 1815-1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland
- Wrote An Investigation of the Laws of Thought (1854)
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT



ONE 08

Number Systems

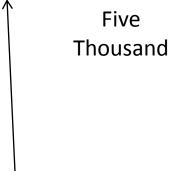
- Decimal
 - Base 10
- Binary
 - Base 2
- Hexadecimal
 - Base 16

Decimal Numbers

Base 10 (our everyday number system)

1's Column 10's Column 100's Column 1000's Column

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$



Three Hundred

Seven Tens Four Ones

Base 10

Binary Numbers

Base 2 (computer number system)

$$1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

$$\uparrow \qquad \text{One} \qquad \text{One} \qquad \text{Two} \qquad \text{One}$$
Eight Four Two One

Powers of Two

- $2^0 =$
- $2^1 =$
- $2^2 =$
- $2^3 =$
- $2^4 =$
- $2^5 =$
- $2^6 =$
- $2^7 =$

- $2^8 =$
- $2^9 =$
- $2^{10} =$
- $2^{11} =$
- $2^{12} =$
- $2^{13} =$
- $2^{14} =$
- $2^{15} =$

Powers of Two

•
$$2^0 = 1$$

•
$$2^1 = 2$$

•
$$2^2 = 4$$

•
$$2^3 = 8$$

•
$$2^4 = 16$$

•
$$2^5 = 32$$

•
$$2^6 = 64$$

•
$$2^7 = 128$$

•
$$2^8 = 256$$

•
$$2^9 = 512$$

•
$$2^{10} = 1024$$

•
$$2^{11} = 2048$$

•
$$2^{12} = 4096$$

•
$$2^{13} = 8192$$

•
$$2^{14} = 16384$$

•
$$2^{15} = 32768$$

Handy to memorize up to 2¹⁰

ONE S

Bits, Bytes, Nibbles ...

Bits

- Bytes = 8 bits
- Nibble = 4 bits

10010110
most least significant bit bit

10010110 nibble

- Words = 32 bits
 - Hex digit to represent nibble

CEBF9AD7

most significant byte

least significant byte

Decimal to Binary Conversion

Two Methods:

 Method 1: Find largest power of 2 that fits, subtract and repeat

 Method 2: Repeatedly divide by 2, remainder goes in next most significant bit

 Find largest power of 2 that fits, subtract, repeat

53₁₀

 Find largest power of 2 that fits, subtract, repeat

53 ₁₀	32×1
53-32 = 21	16×1
21-16 = 5	4×1
5-4=1	1×1

$$= 110101_2$$

 Repeatedly divide by 2, remainder goes in next most significant bit

$$53_{10} =$$

 Repeatedly divide by 2, remainder goes in next most significant bit

$$53_{10} = 53/2 = 26 \text{ R1}$$
 LSB $26/2 = 13 \text{ R0}$ $13/2 = 6 \text{ R1}$ $6/2 = 3 \text{ R0}$ $3/2 = 1 \text{ R1}$ $1/2 = 0 \text{ R1}$ MSB

 $= 110101_2$

Number Conversion

- Binary to decimal conversion
 - Convert 10011₂ to decimal

$$16 \times 1 + 8 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 19_{10}$$

- Decimal to binary conversion
 - Convert 47₁₀ to binary

$$32 \times 1 + 16 \times 0 + 8 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 1011111_2$$

D2B Example

Convert 75₁₀ to binary

D2B Example

Convert 75₁₀ to binary

$$75_{10} = 64 + 8 + 2 + 1 = 1001011_2$$

• Or 75/2 = 37 R1

37/2 = 18 R1

18/2 = 9 R0

9/2 = 4 R1

4/2 = 2 R0

2/2 = 1 R0

1/2 = 0 R1

- N-digit decimal number
 - How many values?
 - Range?

- Example:3-digit decimal number
 - Possible values
 - Range

ONE 5

- N-digit decimal number
 - How many values?
 - 10^N
 - Range?
 - $[0, 10^N 1]$
- Example: 3-digit decimal number
 - Possible values
 - $10^3 = 1000$
 - Range
 - [0,999]

ONE 2

- N-bit binary number
 - How many values?
 - Range?

- Example: 3-bit binary number
 - Possible values
 - Range

- N-bit binary number
 - How many values?
 - 2^N
 - Range?
 - $[0, 2^N 1]$
- Example:3-bit binary number
 - Possible values

•
$$2^3 = 8$$

- Range
 - $[0,7] = [000_2, 111_2]$

- N-digit decimal number
 - How many values?
 - 10^N
 - Range?
 - $[0, 10^N 1]$
- Example:3-digit decimal number
 - Possible values
 - $10^3 = 1000$
 - Range
 - [0,999]

- N-bit binary number
 - How many values?
 - 2^N
 - Range?
 - $[0, 2^N 1]$
- Example: 3-bit binary number
 - Possible values

•
$$2^3 = 8$$

- Range
 - $[0,7] = [000_2, 111_2]$

Hexadecimal Numbers

Base 16 number system

- Shorthand for binary
 - Four binary digits (4-bit binary number) is a single hex digit

ONE

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
A	10	
В	11	
С	12	
D	13	
Е	14	
F	15	

ONE

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary

- Hexadecimal to decimal conversion:
 - Convert 0x4AF to decimal

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary
 - $0x4AF = 0100\ 1010\ 1111_2$

- Hexadecimal to decimal conversion:
 - Convert 0x4AF to decimal
 - $4 \times 16^2 + 10 \times 16^1 + 15 \times 16^0 = 119910_{10}$

Number Systems

- Popular
 - Decimal
 - Binary
 - Hexadecimal

- Base 10
- Base 2
- Base 16

- Others
 - Octal
 - Any other base

Base 8

Octal Numbers

Same as hex with one less binary digit

Octal Digit	Decimal Equivalent	Binary Equivalent
0	0	000
1	1	001
2	2	010
3	3	011
4	4	100
5	5	101
6	6	110
7	7	111

Number Systems

• In general, an N-digit number $\{a_{N-1}a_{N-2}\dots a_1a_0\}$ of base R in decimal equals

•
$$a_{N-1}R^{N-1} + a_{N-2}R^{N-2} + \dots + a_1R^1 + a_0R^0$$

Example: 4-digit {5173} of base 8 (octal)

Number Systems

• In general, an N-digit number $\{a_{N-1}a_{N-2}\dots a_1a_0\}$ of base R in decimal equals

•
$$a_{N-1}R^{N-1} + a_{N-2}R^{N-2} + \dots + a_1R^1 + a_0R^0$$

- Example: 4-digit {5173} of base 8 (octal)
 - $5 \times 8^3 + 1 \times 8^2 + 7 \times 8^1 + 3 \times 8^0 = 2683_{10}$

Decimal to Octal Conversion

- Remember two methods for D2B conversion
 - 1: remove largest multiple; 2: repeated divide
- Convert 29₁₀ to octal

Decimal to Octal Conversion

- Remember two methods for D2B conversion
 - 1: remove largest multiple; 2: repeated divide
- Convert 29₁₀ to octal
- Method 2

$$29_{10} = 35_8$$

Decimal to Octal Conversion

- Remember two methods for D2B conversion
 - 1: remove largest multiple; 2: repeated divide
- Convert 29₁₀ to octal
- Method 1

$$29_{10} = 24 + 5 = 3 \times 8^1 + 5 \times 8^0 = 35_8$$

Or (better scalability)

$$29_{10} = 16 + 8 + 4 + 1 = 11101_2 = 35_8$$

Octal to Decimal Conversion

Convert 163₈ to decimal

Octal to Decimal Conversion

Convert 163₈ to decimal

•
$$163_8 = 1 \times 8^2 + 6 \times 8^1 + 3$$

•
$$163_8 = 64 + 48 + 3$$

•
$$163_8 = 115_{10}$$

Recap: Binary and Hex Numbers

Example 1: Convert 83₁₀ to hex

• Example 2: Convert 01101011_2 to hex and decimal

Example 3: Convert 0xCA3 to binary and decimal

Recap: Binary and Hex Numbers

- Example 1: Convert 83₁₀ to hex
 - $83_{10} = 64 + 16 + 2 + 1 = 1010011_2$
 - $1010011_2 = 1010011_2 = 53_{16}$
- Example 2: Convert 01101011₂ to hex and decimal
 - $01101011_2 = 0110 \ 1011_2 = 6B_{16}$
 - $0x6B = 6 \times 16^1 + 11 \times 16^0 = 96 + 11 = 107$
- Example 3: Convert 0xCA3 to binary and decimal
 - $0xCA3 = 1100\ 1010\ 0011_2$
 - $0xCA3 = 12 \times 16^2 + 10 \times 16^1 + 3 \times 16^0 = 3235_{10}$

Large Powers of Two

- $2^{10} = 1 \text{ kilo}$ $\approx 1000 (1024)$
- $2^{20} = 1 \text{ mega} \approx 1 \text{ million } (1,048,576)$
- $2^{30} = 1$ giga ≈ 1 billion (1,073,741,824)
- $2^{40} = 1 \text{ tera}$ $\approx 1 \text{ trillion } (1,099,511,627,776)$

ONE NO

Large Powers of Two: Abbreviations

• $2^{10} = 1 \text{ kilo}$ $\approx 1000 (1024)$

for example: 1 kB = 1024 Bytes

1 kb = 1024 bits

• $2^{20} = 1 \text{ mega} \approx 1 \text{ million } (1,048,576)$

for example: 1 MiB, 1 Mib (1 megabit)

• $2^{30} = 1$ giga ≈ 1 billion (1,073,741,824)

for example: 1 GiB, 1 Gib

Estimating Powers of Two

What is the value of 2²⁴?

 How many values can a 32-bit variable represent?

Estimating Powers of Two

- What is the value of 2²⁴?
 - $2^4 \times 2^{20} \approx 16$ million

- How many values can a 32-bit variable represent?
 - $2^2 \times 2^{30} \approx 4$ billion

Binary Codes

Another way of representing decimal numbers

Example binary codes:

- Weighted codes
 - Binary Coded Decimal (BCD) (8-4-2-1 code)
 - 6-3-1-1 code
 - 8-4-2-1 code (simple binary)
- Gray codes
- Excess-3 code
- 2-out-of-5 code

Binary Codes

Decimal #	8-4-2-1 (BCD)	6-3-1-1	Excess-3	2-out-of-5	Gray
0	0000	0000	0011	00011	0000
1	0001	0001	0100	00101	0001
2	0010	0011	0101	00110	0011
3	0011	0100	0110	01001	0010
4	0100	0101	0111	01010	0110
5	0101	0111	1000	01100	1110
6	0110	1000	1001	10001	1010
7	0111	1001	1010	10010	1011
8	1000	1011	1011	10100	1001
9	1001	1100	1100	11000	1000

Each code combination represents a single decimal digit.

Weighted Codes

- Weighted codes: each bit position has a given weight
 - Binary Coded Decimal (BCD) (8-4-2-1 code)
 - Example: $726_{10} = 0111 \ 0010 \ 0110_{BCD}$
 - 6-3-1-1 code
 - **Example:** $1001 (6-3-1-1 \text{ code}) = 1\times6 + 0\times3 + 0\times1 + 1\times1$
 - Example: $726_{10} = 1001 \ 0011 \ 1000_{6311}$
- BCD numbers are used to represent fractional numbers exactly (vs. floating point numbers – which can't - see Chapter 5)

Weighted Codes

Decimal #	8-4-2-1 (BCD)	6-3-1-1
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0100
4	0100	0101
5	0101	0111
6	0110	1000
7	0111	1001
8	1000	1011
9	1001	1100

BCD Example:

$$726_{10} = 0111\ 0010\ 0110_{BCD}$$

6-3-1-1 code Example:

$$726_{10} = 1001\ 0011\ 1000_{6311}$$

ONE -ROS

Excess-3 Code

Decimal #	Excess-3
0	0011
1	0100
2	0101
3	0110
4	0111
5	1000
6	1001
7	1010
8	1011
9	1100

- Add 3 to number, then represent in binary
 - Example: $5_{10} = 5 + 3 = 8 = 1000_2$
- Also called a biased number
- Excess-3 codes (also called XS-3) were used in the 1970's to ease arithmetic

Excess-3 Example:

$$726_{10} = 1010\ 0101\ 1001_{xs3}$$

2-out-of-5 Code

Decimal #	2-out-of-5
0	00011
1	00101
2	00110
3	01001
4	01010
5	01100
6	10001
7	10010
8	10100
9	11000

 2 out of the 5 bits are 1

- Used for error detection:
 - If more or less than 2 of 5 bits are 1, error

N N S

Gray Codes

Decimal #	Gray
0	0000
1	0001
2	0011
3	0010
4	0110
5	1110
6	1010
7	1011
8	1001
9	1000

- Next number differs in only one bit position
 - Example: 000, 001, 011, 010, 110, 111, 101, 100
- Example use: Analog-to-Digital (A/D) converters. Changing 2 bits at a time (i.e., 011
 →100) could cause large inaccuracies.

Addition

Decimal

Binary

ONE ROM

Addition

Decimal

Binary

ONE ROM

Addition

Decimal

Binary

Binary Addition Examples

 Add the following 4-bit binary numbers

 Add the following 4-bit binary numbers

Binary Addition Examples

 Add the following 4-bit binary numbers

 Add the following 4-bit binary numbers

Binary Addition Examples

Add the following 4-bit binary numbers

 Add the following 4-bit binary numbers

Overflow!

Overflow

- Digital systems operate on a fixed number of bits
- Overflow: when result is too big to fit in the available number of bits
- See previous example of 11 + 6

Signed Binary Numbers

- Sign/Magnitude Numbers
- Two's Complement Numbers

ONE Sio

Sign/Magnitude

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - **Positive number:** sign bit = 0
 - Negative number: sign bit = 1

$$A:\{a_{N-1},a_{N-2},\cdots a_2,a_1,a_0\}$$

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

- Example, 4-bit sign/magnitude representations of \pm 6:
 - +6=
 - **-**6 =
- Range of an *N*-bit sign/magnitude number:

ONE S

Sign/Magnitude

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - **Positive number:** sign bit = 0
 - Negative number: sign bit = 1

$$A:\{a_{N-1},a_{N-2},\cdots a_2,a_1,a_0\}$$

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

- Example, 4-bit sign/magnitude representations of \pm 6:
 - +6 = 0110
 - -6 = **1110**
- Range of an *N*-bit sign/magnitude number:
 - $[-(2^{N-1}-1), 2^{N-1}-1]$

Sign/Magnitude Numbers

- Problems:
 - Addition doesn't work, for example -6 + 6:

$$+0110$$

• Two representations of $0 (\pm 0)$:

•
$$(+0) =$$

•
$$(-0) =$$

Sign/Magnitude Numbers

- Problems:
 - Addition doesn't work, for example -6 + 6:

$$+0110$$

- Two representations of $0 (\pm 0)$:
 - (+0) = 0000
 - (-0) = 1000

Two's Complement Numbers

- Don't have same problems as sign/magnitude numbers:
 - Addition works
 - Single representation for 0

- Range of representable numbers not symmetric
 - One extra negative number

Two's Complement Numbers

• msb has value of -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an *N*-bit two's comp number?

- Most positive 4-bit number?
- Most negative 4-bit number?

Two's Complement Numbers

• msb has value of -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an *N*-bit two's comp number?

•
$$[-(2^{N-1}), 2^{N-1} - 1]$$

- Most positive 4-bit number? 0111
- Most negative 4-bit number? 1000

"Taking the Two's Complement"

- Flips the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$

"Taking the Two's Complement"

- Flips the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$
 - 1. 1100

$$2. \ \ \frac{+ \ 1}{1101 = -3_{10}}$$

Two's Complement Examples

• Take the two's complement of $6_{10} = 0110_2$

• What is the decimal value of the two's complement number 1001₂?

Two's Complement Examples

- Take the two's complement of $6_{10} = 0110_2$
 - 1. 1001

$$2. \frac{+ 1}{1010_2} = -6_{10}$$

- What is the decimal value of the two's complement number 1001₂?
 - 1. 0110

2.
$$\frac{+}{0111_2} = 7_{10}$$
, so $1001_2 = -7_{10}$

ONE 2

• Add 6 + (-6) using two's complement numbers

• Add -2 + 3 using two's complement numbers

Two's Complement Addition

• Add 6 + (-6) using two's complement numbers

• Add -2 + 3 using two's complement numbers

Two's Complement Addition

• Add 6 + (-6) using two's complement numbers

• Add -2 + 3 using two's complement numbers

Increasing Bit Width

- Extend number from N to M bits (M > N):
 - Sign-extension
 - Zero-extension

Sign-Extension

- Sign bit copied to msb's
- Number value is same

- Example 1
 - 4-bit representation of 3 = 0011
 - 8-bit sign-extended value:
- Example 2
 - 4-bit representation of -7 = 1001
 - 8-bit sign-extended value:

Sign-Extension

- Sign bit copied to msb's
- Number value is same

- Example 1
 - 4-bit representation of 3 = 0011
 - 8-bit sign-extended value: 00000011
- Example 2
 - 4-bit representation of -7 = 1001
 - 8-bit sign-extended value: 11111001

Zero-Extension

- Zeros copied to msb's
- Value changes for negative numbers

Example 1

4-bit value =

00112

- 8-bit zero-extended value:
- Example 2

4-bit value =

1001

8-bit zero-extended value:

Zero-Extension

- Zeros copied to msb's
- Value changes for negative numbers

Example 1

• 4-bit value =

00112

- 8-bit zero-extended value: 00000011
- Example 2
 - 4-bit value =

1001

• 8-bit zero-extended value: 00001001

ONE S

Zero-Extension

- Zeros copied to msb's
- Value changes for negative numbers

Example 1

$$0011_2 = 3_{10}$$

- 8-bit zero-extended value: $00000011 = 3_{10}$
- Example 2

$$1001 = -7_{10}$$

• 8-bit zero-extended value: $00001001 = 9_{10}$

NE

Number System Comparison

Number System	Range
Unsigned	$[0, 2^{N}-1]$
Sign/Magnitude	$[-(2^{N-1}-1), 2^{N-1}-1]$
Two's Complement	$[-2^{N-1}, 2^{N-1}-1]$

For example, 4-bit representation:

