
LZSS Circuit

By Eliat Avidan

CPE 405

LZSS is one of many techniques of decoding and encoding losslessly. This is a simple

compression technique that based on two windows: search buffer and lookahead buffer. Search

buffer contain the recently encoded sequence while lookahead buffer contain the next part to be

encoded. To minimize the time, it takes to encode the whole sequence- a very large buffer is

being used (in the assignment we used a small buffer, 7 and 5 symbols, but this was just for

learning purposes).

The process: there is a pointer that goes back in the search buffer until there is a match to the

symbol in the lookahead buffer. The distance of the pointer from the lookahead buffer is called

the offset. After finding the first match, the pointer continues searching for more symbols

followed by the first one to match a sequence in the lookahead buffer. The number of symbols

matched between the search buffer to the lookahead buffer is called the length of the match.

Every step we will shift to the left the sequence and have new symbol in the lookahead buffer to

compare. In case of finding length of the match, we need to shift as the length of the match

symbols.

Encoding steps:

Step 1-> Initialize the buffers to zero (search and lookahead).

Step 2-> shift char by char from known string until filling lookahead buffer.

Step 3->Search for the longest matching string in the buffer.

Step 4.->If a match is found, set all the data needed (match, length and distance).

Otherwise, set match to zero (match did not find) and the first un-coded symbol to the encoded

output.

Step 5.->Shift the buffers as the number of matched char found, otherwise, shift one time.

Step 6.->Repeat from Step 3, until all the entire input has been encoded.

Eilat Avidan

CPE405

Final project

Verilog code:

Eilat Avidan

CPE405

Final project

Testbench:

Eilat Avidan

CPE405

Final project

Clarifications:

Using the string given in the homework- hillibilly_hill_bill (total of 20 char).

Size of search buffer – 8 char (64 bits)

Eilat Avidan

CPE405

Final project

Size of lookahead buffer – 8 char (64 bits)

 h I L l i b i l l

 h i L L i b i l l y

 h i l L I b i l l y _

 h i l l I B i l l y _ h

 h i l l i b I l l y _ h i

 H i l l i b I L l y _ h i L

Match found- (1, distance , length of string found)

Match not found- (0, char sent)

Expected output-

(0,i)

(0,l)

(1,1,1)

(1,3,1)

(0,b)

(1,5,3)

Code output:

LZSS module:

reg [numChar*bits-1:0] search; //reg to hold 8 char

reg [numChar*bits-1:0] lookahead; //reg to hold 8 char

reg [3:0] distance_out; //the distance of the char found in the search buffer

reg [3:0] length_out; //the number of char found

reg [7:0] char_send; //if there is no match, return char

reg match_out;

Search buffer Lookahead buffer

Eilat Avidan

CPE405

Final project

integer count,i,j;

integer count_match = 0;

integer temp;

integer length_til_first_match;

integer shift_count = 1;

The two buffers declared using parameters that their size can be changed. In my case, I chose 64

bit long for each buffer. There are 4 main outputs: 1/0- if a match found, the character sent in

case no match has been found, the distance from the beginning of search buffer of the char

found, and lastly, the length of the string of matched characters.

In order to achieve it, I used some variables to keep truck of the counting.

Count_match will count the length of the string match, after shift will reset to zero.

Length_til_first_match- count the distance from the beginning of search string until the first

match char found.

Shift_count- we always shift one time until more than one characters found

Simulation results:

 Shifting 8 times until lookahead buffer is full and search buffer gets first char.

Eilat Avidan

CPE405

Final project

 Output after shifting when the algorithm is looking for match.

