LZSS Circuit
By Eliat Avidan
CPE 405

LZSS is one of many techniques of decoding and encoding losslessly. This is a simple
compression technique that based on two windows: search buffer and lookahead buffer. Search
buffer contain the recently encoded sequence while lookahead buffer contain the next part to be
encoded. To minimize the time, it takes to encode the whole sequence- a very large buffer is
being used (in the assignment we used a small buffer, 7 and 5 symbols, but this was just for

learning purposes).

The process: there is a pointer that goes back in the search buffer until there is a match to the
symbol in the lookahead buffer. The distance of the pointer from the lookahead buffer is called
the offset. After finding the first match, the pointer continues searching for more symbols
followed by the first one to match a sequence in the lookahead buffer. The number of symbols
matched between the search buffer to the lookahead buffer is called the length of the match.
Every step we will shift to the left the sequence and have new symbol in the lookahead buffer to
compare. In case of finding length of the match, we need to shift as the length of the match

symbols.

Encoding steps:

Step 1-> Initialize the buffers to zero (search and lookahead).
Step 2-> shift char by char from known string until filling lookahead buffer.
Step 3->Search for the longest matching string in the buffer.

Step 4.->If a match is found, set all the data needed (match, length and distance).

Otherwise, set match to zero (match did not find) and the first un-coded symbol to the encoded

output.

Step 5.->Shift the buffers as the number of matched char found, otherwise, shift one time.

Step 6.->Repeat from Step 3, until all the entire input has been encoded.

Eilat Avidan
CPE405
Final project

Verilog code:

module lzss (clk, reset, data_in,o _match out,o_distance out, o length out,o char send);

3 input clk;

4 input reset;

5 input [7:0] data_in; //8 bit char

6 output o _match out: ffeither 1/0 depend of a match found

T output [3:0] o_distance_out; J//the distance of the char found in the search buffer
8 output [3:0] o length out; //fthe number of char found

9 output [7:0] o _char send; Jf1if there is no match, return char
10 parameter bits = ffzize of buff as constent
11 parameter numChar = 2;
4b=
14 reg [numChar*bits-1:0] search; //reg to hold 8 char
15 reg [numChar*bits-1:0] lookahead: /freg to hold & char
16 reg [3:0] distance out; //the distance of the char found in the search buffer
17 reg [3:0] length_out; /fthe number of char found
18 reg [7:0] char send; Jfif there is no match, return char
19 reg match_out;
20
21 integer count,i,j;
23 integer count match = O; S fkeep truck of the # of matched char found

3 integer temp:

4 integer length_til first_match; ffdistance from the begining of search buffer
5 integer shift count = 1: Jfkeep truck of shifting

assign o distance out = distance out;
assign o_length_out = length_out;
assign o _char send = char send;

[S S T U T O R O I O8]
-] @

[T Jes]

30 assign o match out = match out;
31
32 initial
33 begin
34 count = O
35 for (i= ;1= 1+0) ffinitialize both buffers to zeros
36 begin

search[i*bits-1-:bits] = O

lookahead[i%*bits-1-:bits] = 0;

end //end for loop

40 end //end initial

always @ (posedge clk) begin

if (lockahead[numChar*bits-.-:bits] == (1) //stop condition
gstopr
=] if (shift_count !=) begin
search = search << o7 //shift buffer by one char (total of 8 shifting)
search[bits-1-:bits] = lookahead[numChar*bits-1-:bits]: //copy M5B in lookahead buffer to L5B in search buffer
lookahead = lookahead << 2 //shift lookahead buffer by one char
#1 lookahead[bits-1-:bits] data_in: //mew char to the lookahead buffer
shift count = shift count - 1; //decreament shift count
lengci_nut = -
match_out =
char_send = 0
- end //end if statement (shift_count != Q)
= if (shift_count == [} begin
count = count +.; //keep truck of num of shifts
temp = O
count_match = 0;
length til first match = 1;
=] if (count > numChar) begin //as long as we did not reach the end of the buffer, ifl
for (i = 1; 1 < numChar; i = i + 1) begin
64 if (search[bits¥%i-!-:bits] == lookahead[numChar*bits-1-:bits] && (i '= 1)) begin /fif 2 check if there is any bit in search buff = to M5B in look
65 count_match = count_match + 1; //if there is a match, increamsnt count match

66 length til first match = i; //keep truch of the distance from the beginning of search buffer

Eilat Avidan
CPE405
Final project

83
84
85

o

)
{T]
1]

a

] end

o

~ end
—end

T TR BT TR T R T BT R
[T
T

T

endmodule

[
Els
s

Testbench:

//sdisglayit"%c,gc", search[bits*i-1-:bits], lookahead[numChar*bits-1-:kits]):;

for {(j = i-1: 3 » 0: j =3 - 1) begin

//if match found, go back to check rest of char

if (search[bits¥*j-_-:bits] == lookahead[numChar*bits-(i-j)-:kit=s] && (temp == U)) begin

count_match = count_match + 1:

//if other char matched, increament count_match

end //end for loop (3)
else
temp = L; //distinguish between first char in the buffer compared, to the rest of char
end //end for loop
end //end ifz
else if (search[bits*i-l-:bits] — lookahead[numChar*bitcs-1-:bits]) f/else to if 2, just first char match

count_match = 1;
if (count_match
length_out = 1'bl;
distance_out = length til first match;
match_out = 1'bl;
end
else if (count_match > 1) begin
length_out = count_match;
distance out = length til first match;
match_out = 1'bl;
shift count = count_match - 1;
end
else begin
match_out =

char_send = lookahead[numChar*bits-1-:bits];

end

end

shift_count = shift_count + 1:

/fafter exiting the loop, copy data needed

// end (count_match == 1

//changed for i

// end else if

/Ffif we did not find match
//set match out to zero
//send the char

//end else

// end big for loop
//end if

// end (shift count == 0
/fend always

Eilat Avidan
CPE405
Final project

1 modnle testB()

2 £

3 T;’J’Declartions

4 £

= reg clk,reset;

6 reg [7:0] data in; /f8 bit char

7 reg [7:0] mem [C0:19];

8 wire o_match out;

S wire [3:0] o_distance_out;

10 wire [3:0] o length out;

11 wire [7:0] o_char send;

12 parameter bits = Z;

13 parameter numChar = 3;

14

15 integer i = 0;

le

17 Iri

18 T,ffl:alling top modoule

15 I
20
21 lzss test (clk, reset, data_in,o_match out,o_distance out, o_length out,o char_ send);
23 £
24 T;’J’Initial Declerations
25 £
26
27 initial
28 Hbegin
29 clk <= 0
30 reset <= 1;
31
32 #- reset <= 0;
33 Sdisplay{"Match not found: (Match found :
34 Sdisplay("Match found: (Match found, Length) ™) ;
35
36 —end
37

35 Flalways & (posedge clk) begin

40 Sreadmemn ("data.datc™, mem) ; J/reading data from a file
41 data in = mem[i]: f/copy the data to data in
42 i=1+ 1: J/{move to the other char
43 [H if (o match out == [&& 0 char send != 0) begin ffprint if n o match found
44 Saisplag{” (0, Zc)™ ,D_Ehar_;end) M

2 - end

46 [H if (o _match out == 1) begin /S fprint if match has been found
47 Sdisplay("(1l,%d,%d)",0 distance out, o length out):

ag L end B B B B

49 Lend flend always

=11

51 [Halways begin

2 clk <= O;#5;

53 clk <= 1;#5;

! —end

)

56 endmodule

Clarifications:
Using the string given in the homework- hillibilly_hill_bill (total of 20 char).
Size of search buffer — 8 char (64 bits)

Eilat Avidan

CPEA405

Final project

Size of lookahead buffer — 8 char (64 bits)

Search buffer Lookahead buffer
h I L I i b i | |
h i L L i b i I | y
h [I L I b i I I y _
h i I I I B |i I I y _ h
h i I I i b I I I y _ h i
H |i I I [b I L I y _ h i L
Match found- (1, distance , length of string found)
Match not found- (0, char sent)
Expected output-
(0.i)
O.1)
(1,1,2)
(1,3,2)
(0.b)
(1,5,3)
Code output:
F l Transcript
VSIM 87> run
Match not found: (Match found, Char)
Match found: (Match found, Distance, Length)
£ (0, 1)
$# (0, 1)
(1, 1, 1)
(1, 3, 1)
£ (0, b)
$# (1, 5, 2)
LZSS module:
reg [numChar*bits-1:0] search; /Ireg to hold 8 char
reg [numChar*bits-1:0] lookahead; /reg to hold 8 char
reg [3:0] distance_out; /Ithe distance of the char found in the search buffer
reg [3:0] length_out; [lthe number of char found
reg [7:0] char_send,; /lif there is no match, return char

reg match_out;

Eilat Avidan
CPEA405
Final project

integer count,i,j;

integer count_match = 0;
integer temp;

integer length_til_first_ match;
integer shift_count = 1;

The two buffers declared using parameters that their size can be changed. In my case, | chose 64
bit long for each buffer. There are 4 main outputs: 1/0- if a match found, the character sent in
case no match has been found, the distance from the beginning of search buffer of the char
found, and lastly, the length of the string of matched characters.

In order to achieve it, | used some variables to keep truck of the counting.

Count_match will count the length of the string match, after shift will reset to zero.
Length_til_first_match- count the distance from the beginning of search string until the first
match char found.

Shift_count- we always shift one time until more than one characters found

Simulation results:

=>» Shifting 8 times until lookahead buffer is full and search buffer gets first char.

|_|I_II_II_II_II_II_II_II_II
[E R I N S S S D E——
e [JYeo | Yec | [eo | JYe2 | Yes | Y& [[|

4 69 6cbc 79 20 68 69 6 6C 20 62 68 6C 6C

Eilat Avidan
CPEA405
Final project
=>» Output after shifting when the algorithm is looking for match.

