
IEEE COMMUNICATIONS LETTERS, VOL. 3, NO. 8, AUGUST 1999 245

Bidirectionally Decodable Streams
of Prefix Code-Words

Bernd Girod,Fellow, IEEE

Abstract—A new general scheme is introduced that allows
bidirectional decoding of variable length coded bitstreams from
either end. Except for a small fixed number of extra bits appended
to a sequence of code words, the scheme is as efficient as Huffman
coding. The extra operations required at coder and decoder are
code word reversal and oneEXOR for each bit.

Index Terms—Affix codes, biprefix codes, error resilient source
coding, Huffman coding, reversible variable length coding.

I. INTRODUCTION

W HEN variable length codes (VLC’s) are utilized for
source compression, bit errors resulting from transmis-

sion over a noisy communication link can have catastrophic
consequences. One erroneously decoded symbol often leads to
a loss of synchronization, and many, or possibly all following
decoded symbols are faulty. In practice, one inserts unique
synchronization patterns into the VLC bitstream in regular
intervals, such that synchronization can be regained. We refer
to the VLC payload bits between two synchronization patterns
as oneframe in this letter.

For a given set of symbol probabilities, a minimum redun-
dancy code can be constructed using Huffman’s algorithm [1].
The Huffman code tree is usually mapped into a prefix code,
such that no code word is the prefix of another code word.
Thus, code-words can be concatenated and are uniquely decod-
able without extra separation symbols. Parsing the bitstream in
forward direction (i.e., beginning with the start of a frame), we
can decode the bitstream one symbol at a time. In general, a
concatenation of prefix code-words is not decodable in reverse
direction, i.e., parsing a frame from its end, we can uniquely
determine the symbol separations only with considerable delay
and computational effort [2]. For some symbol strings, it might
be required to process the bitstream all the way from the end
to the beginning of the frame, until following symbols can be
uniquely decoded. Therefore, a bit error occuring somewhere
inside a frame renders the remainder of the frame useless. In
such situations, it is highly desirable to have a VLC that can
also be decoded symbol by symbol in reverse direction, such
that the remainder of the frame can be recovered and only
few symbols are affected.

Given the importance of reverse decoding for practical
systems operating over error-prone channels, amazingly little

Manuscript received June 17, 1998. The associate editor coordinating the
review of this letter and approving it for publication was Prof. Y. Bar-Ness.

The author is with the Telecommunications Laboratory, University
ofErlangen-Nuremberg, 91058 Erlangen, Germany (e-mail: girod@nt.e-
technik.uni-erlangen.de).

Publisher Item Identifier S 1089-7798(99)07356-1.

Fig. 1. Blockdiagram of the reversible variable length coder.

research has been published that addresses the problem [2]–[4].
Only recently, there has been an increasing interest in the
context of error resilient video coding methods, notably for the
MPEG-4 standardization and for mobile extensions of ITU-T
Recommendation H.263 [5]–[7]. The approach to reversible
variable length coding (RVLC) has been in general to design
a code table that possesses both the prefix and the suffix
condition, i.e., each code word is neither the prefix nor the
suffix of any other code word. The bitstream resulting from
the concatenation of suchbiprefix (or affix [2]) code-words is
then decodable in either direction. Unfortunately, only certain
optimal prefix codes, such as the Golomb–Rice codes or the
Exp-Golomb codes, can be mapped into an equally efficient
biprefix code [5], [6]. For general symbol probabilities the
biprefix constraint often leads to codes that are less efficient
than Huffman codes [2], [4].

In this letter, a new general method is presented that
generates a bidirectionally decodable bitstream composed of
VL prefix code words. Rather than designing a severely con-
strained biprefix code, we modify the bitstream resulting from
the concatenation of prefix code words (e.g., Huffman code
words) appropriately, such that reversible decoding becomes
possible. With the exception of a small fixed number of extra
bits appended to the end of a frame, the scheme is as efficient
as Huffman coding.

II. NEW METHOD

The new method is based on the idea to combine prefix and
suffix code words representing the same symbol string at the
coder, and to convert this bitstream into a concatenation of
appropriately oriented prefix code words in the decoder. We
first show the coder, then the decoder operating in forward
and in reverse direction.

1089–7798/99$10.00 1999 IEEE

246 IEEE COMMUNICATIONS LETTERS, VOL. 3, NO. 8, AUGUST 1999

A. Encoder

Fig. 1 shows the blockdiagram of the encoder. A string of
symbols is encoded with a prefix code
that represents theth symbol by bits

The vertical bar represents
the concatenation of bit patterns and . In a table-based
implementation, one can simply store the code word length

together with for each possible symbol
In a conventional variable length coder, one would now
concatenate the variable length (VL) code-words by shifting
them serially out of the register producing the bitstream

(1)

In our new coder, we reverse each individual code word,
transforming into , such that

(2)

The bitstream of concatenated reversed code words

(3)

possesses the suffix condition, i.e., it can be decoded, one
symbol at a time, in reverse, but not in forward direction. We
generate a bidirectionally decodable bitstream by combining

(4)

where represents a bitwise exclusive-or (EXOR) operation.
Thus, the forward decodable bitstreamis appended with
trailing zero bits, while the reversely decodable bitstreamis
offset (delayed) by bits and augmented by leading zeros.
For bidirectional decodability, the offset has to obey

(5)

as will be apparent when considering the decoding procedure
in the next section. In practice, one simply chooses a fixed
equal to the maximum code word length of the VL code,
which minimizes redundancy without requiring knowledge
about the actually occuring code word lengths for a frame.

Note that an extension of the scheme to nonbinary VLC is
straightforward. For an -ary code, one simply replaces the
exclusive-or operation by an addition modulo

B. Decoding in Forward Direction

Fig. 2 shows the blockdiagram of the decoder. The forward
decodable bitstream is recovered by

(6)

Fig. 2. Blockdiagram of the reversible variable length decoder.

i.e., the bitstream is combined in anEXOR operation with
the bitstream of reversed VL code words, offset bybits. The
bitstream can be decoded symbol by symbol.
Each time the VL decoder has recovered another symbol,
it signals the length to the code-word reverser, and the
corresponding bits are reversed to produce With
an offset of bits, is fed back andEXORed with the
next bits of to produce the next bits of the
forward decodable bitstream. Thus bits are “consumed”
from the forward decodable bitstream, but new bits of
are recovered after code word reversal.

The offset has to be at least the maximum code-word
length to ensure that there is always a sufficient number
of bits in the forward decodable bitstreamto decode the next
symbol. If the maximum length code word is encountered, all
bits available in the forward decodable bitstream at that time
will be “consumed” by the VL decoder to decode this symbol,
if

As apparent from (6), the last bits of are redundant
for decoding in forward direction. Since the lastbits of
are identical with the last bits of the forward decodable
bitstream ends with trailing zeros. These can be used to
check synchronization. If the trailing bits do not decode to
zero, this indicates that synchronization was lost at the end of
the frame due to bit errors.

C. Decoding in Reverse Direction

Any bitstream can be decoded in reverse direction by
simply feeding it backward into the decoder in Fig. 2. The
last bits of are identical with the last bits of (4).
Since the concatenated code-words ofare reversed prefix
code-words, i.e., suffix code-words, we can easily decode the
last symbol from Once we have decoded
we also know the code-word length and can thus reverse

to produce By EXORing the shifted with
the appropriate bits of , one recovers bits of and
the next symbol can be decoded. The process is
repeated until the beginning of frameis reached or an error
is detected.

Again, the lastly recovered bits leading the reversely
decodable bitstream must be zero. Nonzero bits indicate
a loss of synchronization at the end of the decoding process
due to bit errors.

GIROD: BIDIRECTIONALLY DECODABLE STREAMS OF PREFIX CODE WORDS 247

III. CONCLUDING REMARKS

A new scheme has been introduced that allows bidirectional
decoding of VLC bitstreams from either end. We modify the
bitstream resulting from the concatenation of prefix code-
words (e.g., Huffman code-words) appropriately, such that
reversible decoding becomes possible. Except for a small fixed
number of extra bits appended to the end of a frame, the
scheme is as efficient as Huffman coding.

Compared to conventional VL coding, the extra operations
required at coder and decoder are code word reversal and one
EXOR for each bit. These can be cascaded with a conven-
tional VL coder and decoder, thus allowing a straightforward
extension of existing VL coders, or the optional use of
bidirectionally decodable bitstreams with little extra effort.

To mitigate the effects of bit errors through combined
forward and backward decoding of VLC bitstreams, reliable
error detection is required. Error detection is not part of
this scheme and has to be carried out by an appropriate
combination of methods. For example, extra parity check bits
could be inserted to roughly locate an error. Often, this is not
even neccessary, since bit errors in VLC bitstreams tend to
propagate with catastrophic consequences. It is therefore easy
to detect a garbled video, audio, or text stream, e.g., from
syntax violations, and thus locate an error.

The extra bits needed for bidirectional decodability also
provide a certain error resilience. In particular, up to
consecutively erased bits can be tolerated without information
loss. The precise number depends on the exact alignment of the
erasure burst relative to the code word boundaries. An erasure
of consecutive bits can always be corrected,

if no other bit error occurs in the frame. Hence, the burst
erasure resilience can be increased easily by increasing
Note, however, that with multiple bit erasures that are further
apart the entire segment in between them cannot be recovered,
and other techniques such as self-synchronizing variable length
codes [8], [9] or variable-to-fixed lengthTunstallcoding [10]
might be appropriate.

Finally, bidirectionally decodable VLC bitstreams are also
useful for other applications, e.g., random access in com-
pressed data bases. Random access to information at the end
of a frame is faster with reverse decoding.

REFERENCES

[1] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,”Proc. IRE, vol. 40, p. 1098, Sept. 1952.

[2] A. S. Fraenkel and S. T. Klein, “Bidirectional Huffman coding,”
Computer J., vol. 33, no. 4, pp. 297–307, 1990.

[3] J. Berstel and D. Perrin,Theory of Codes. Orlando, FL: Academic,
1985.

[4] Y. Takashima, M. Wada, and H. Murakami, “Reversible variable length
codes,” IEEE Trans. Commun., vol. 43, pp. 158–162, Feb./Mar./Apr.
1995.

[5] J. Wen and J. D. Villasenor, “A class of reversible variable length codes
for robust image and video coding,” inProc. 1997 IEEE Int. Conf. on
Image Processing, ICIP-97, Santa Barbara, CA, vol. 2, pp. 65–68, Oct.
1997.

[6] , “Reversible variable length codes for efficient and robust image
and video coding,” inProc. IEEE 1998 Data Compression Conf.,
Snowbird, UT, Mar. 1998.

[7] R. Talluri, “Error resilient video coding the ISO MPEG-4 standard,”
IEEE Communications Mag., vol. 36, pp. 112–119, June 1998.

[8] P. G. Neumann, “Efficient error-limiting variable length codes,”IRE
Trans. Inform. Theory, vol. IT-8, pp. 292–304, July 1962.

[9] T. J. Ferguson and J. H. Rabinowitz, “Self-synchronizing Huffman
codes,”IEEE Trans. Inform. Theory, vol. IT-30, pp. 687–693, July 1984.

[10] B. P. Tunstall, “Synthesis of noiseless compression codes,” Ph.D.
dissertation, Georgia Inst. Technol., Atlanta, Sept. 1967.

