Agile Frequency Scaling for Adaptive Power Allocation in Many-core Systems
Powered by Renewable Energy Sources

Xiaohang Wang*, Zhiming Li*, Mei Yang', Yingtao Jiang’, Masoud Daneshtalab?, Terrence Mak®*
*Guangzhou Institute of Advanced Technology, CAS, China
Email: {xh.wang, zm.li} @giat.ac.cn
TUniversity of Nevada, Las Vegas, USA
Email: mei.yang@unlv.edu, yingtao@egr.unlv.edu
iUniversity of Turku, Finland
Email: masdan@utu.fi
$The Chinese University of Hong Kong, China
Email: stmak @cse.cuhk.edu.hk

Abstract— As low-power electronics and miniaturization con-
spire to populate the world with emerging devices, one appealing
approach is to power these multi-core/many-core-based devices
with energy harvested from various environments. Of the most
important issues concerning these devices is how to effectively
allocate power budget among the cores competing for power,
which is formulated as one specific type of power-performance
optimization problem in this paper. We attempt to solve this
problem by proposing an Adaptive Power Allocation Technique
(APAT) that explores a dynamic programming network. Our
goal here is to maximize the overall system performance, taking
into account a unique yet challenging fact that, available power
budget might have to undergo a significant change when a
renewable energy source is scavenging. APAT has a linear
time complexity and low hardware overhead. Experiments have
confirmed that APAT can reduce 20 ~ 30% of execution time
compared to other state-of-the-art power allocation algorithms.
In addition, as APAT is quite insensitive to the changing rate of
the power, lending itself well for power management in many-
core systems powered by energy-harvesting sources.

I. INTRODUCTION

There is a general consensus that by the year 2020, the
chip power density will increase as much as 10x over the
year 2012 [1]. A lot of these power hungry chips then
will have to be powered by harvesting renewable energy.
Renewable energy like solar energy is abundant to power
electronic systems from low-power devices [2] to data centers
[3]. One of the technical challenges to improve the energy
efficiency of an energy harvesting based multi-/many-core
chip is power budget allocation, which is to maximize the
chip performance under a limited power or energy budget,
i.e., the power budgeting problem [4]. Frequency scaling can
be used to solve the problem. However, this power budget
problem is complicated by the following issues in an energy
harvesting based many-core system.

1) In a many-core chip, the operating frequencies of the
many resources are likely tunable. Consider an applica-
tion mapped to a 16-core region, where the frequency of
each core can take one of the four allowed values. The
total frequency combination is as large as 4'6, which is

This research program is supported by the Natural Science Foundation
of China No. 61376024 and 61306024, Natural Science Foundation of
Guangdong Province No. S2013040014366.

about 4 x 10°. Heuristic-based approaches [5], [6] cannot
find optimal solutions given such a large solution space.
2) The input power budget from the renewable energy might
have high and rapid variations due to uncertainty in the
environmental situations. Existing approaches [5], [6]
need long run time, leading to unknown behavior or poor
performance. Using energy buffers like supercapacitors
or batteries can suppress the variation, which however,
incurs significant energy loss and suffers from issues like
battery aging, self-discharge, etc [7]. Thus, it would be
beneficial to minimize the usage of energy buffers and
use the renewable energy directly as much as possible.

In this paper, a novel frequency scaling scheme for power
allocation is proposed, Adaptive Power Allocation Technique
(APAT) using dynamic programming with renewable energy
awareness to address the above aforementioned problems. The
power budgeting problem is solved using dynamic program-
ming network with linear time complexity. APAT has the
following key features:

1) APAT can generate globally optimal power allocation
solution under a given power budget from the harvested
energy.

2) The run-time of APAT is much lower (e.g., a few to
dozens of cycles) than that of any other known power
allocation algorithms [5], [6].

3) APAT can be used for many-core systems to control the
power consumption of various on-chip resources at a
finer grain.

Experimental results reveal that APAT can reduce the
expectation time significantly compared with other three com-
peting power allocation methods [5], [6] with much lower
hardware and run-time overhead.

The paper is organized as follows. Section II reviews the
related work. Section III introduces the performance-power
model and problem definition, followed by the description
of the dynamic programming based power allocation scheme
in Section IV. Section V provides the experimental results
and analysis of the proposed approach. Finally, Section VI
concludes the paper.

II. RELATED WORK

Renewable energy could be used to power electronic sys-
tems, ranging from datacenters [8] to embedded system [9].

One of the challenge appears as how to allocate power to
resources since the renewable energy source is not stable and
might have high variation. Power management approaches for
energy harvesting based multi-/many-core can be achieved by
task scheduling [9], frequency/voltage scaling [8], [10], etc.
Similar approaches can be found to solve the power budgeting
problem [4] in many-core systems. Frequency/voltage scaling
can be performed for power allocation [4]-[6]. For example,
[6] proposed a method where the number of cores that can be
powered on is coarsely determined, after which fine-grained
frequency adjustment is followed. Most of these approaches
are heuristic-based [4]-[6], or linear programming-based [11].
Heuristic-based approaches cannot find the optimal solutions
when the number of resources to be controlled is increased or
when the applications’ behavior becomes complicated. Linear
programming-based approaches might lead to high run-time
and power consumption overhead to find a good solution,
which might waste the harvested energy.

III. MODELS AND PROBLEM FORMULATION
A. Performance model

Frequency scaling is used to balance between power con-
sumption and performance. Suppose each application ¢ occu-
pies an N,-tile region where the frequencies of the tiles are
fi, ..., fng- Note that some of the regions can be overlapped,
e.g., a cache bank might be shared by several applications.
An application is assumed to be mapped to only one region.
For a total of @) applications running simultaneously, we

Q
have > Ny, = N, where N is the total number of tiles.
=1

Perfor?nance of each application measured in execution cycles
is modeled in terms of the frequencies of its region/tiles, as

follows,
Cyde:gcycle (flv"'vaq) (1)
Regression models [12] are used to find the gcy.e in Eqn. 1
through curve fitting. We have proposed the following model
in Eqn. 2 experimentally, which can result in lower regression
error, and this model will be validated in the experimental part

in Section V.B.
N(l
In Cycle = Z ai -\ fi)
i=1

where a; is the regression coefficient w.r.t. f;. At the k-th
time interval, the frequencies of an application’s region are
set randomly with a vector f =< fi,..., fy > and measure
the cycles C'ycle,. With K time intervals, the training data
are collected. A linear regression model with the maximum
likelihood estimator [12] will find the coefficients (a;’s) with
the training data set. When some regions are overlapped, there
are some resources shared by multiple applications, which
implies resource contention. Thus, the performance models
are trained for each application in parallel with possible
contentions. These models remain accurate after the training.

B. Dynamic power model

Assuming all the cores are operating at the same voltage
level, the dynamic power of an application with IV, tiles can
be determined as follows:

Ny Ng
Pp=3 ai-Ci-fi V2= bi-fi (3)
i=1 i=1

where «; is the switching activity, C; is the effective capaci-
tance, V is the voltage, b; = o; - C; - V2.

If, besides the core frequencies, the core voltages can also
be adjusted, the dynamic power can be calculated as

Ny Ng
Py=) a;-Ci- fP/K* =) d;f “
=1

i=1

where K is a constant. Similarly, d; = «; - C; /K 2,

C. Problem Definition

With the above models, the power budgeting problem aims
to minimize the overall execution time under the input power
budget. With () applications each occupying an N-tile region,
we have

Q
> wy-Py=P Q)
g=1

where each F, is the power budget for application ¢ at a
given time ¢, and w, are user defined priority weights for
each application.

The power budgeting problem for each application ¢ can
be formulated as,

min Cycle = Jcycle (fla RN qu) (6)
subject to
Nq
Z b - fi < Py, 0
i=1
for each
fiG{Fla---aFM} ®)

The power P, in Eqn. 7 is determined by applying either
Eqn. 3 or 4. Eqn. 8 specifies a discrete set of frequency values
that each frequency variable f; can take.

Dropping the In notation in Eqn. 2 and converting the min
operator to maz in the objective equation, the above problem
definition has the same form as a bounded knapsack problem,
which is NP-hard. On the other hand, the power budget might
have rapid variations, which requires the problem be solved
with low run time and hardware overhead.

IV. THE APAT ALGORITHM
A. Overview of the APAT algorithm

Inspired by the dynamic programming approach to solve
the knapsack problem, which is pseudo-polynomial time
complexity, the problem in Section II.C can also be solved
optimally by the following dynamic programming approach
with polynomial time. Since the logarithmic function in
the objective (Eqn. 2) is monotonic, minimizing Eqn. 2 is

N,

q
equivalent to minimizing) a; -/f;. Let C;, denote the
i=1

i
minimum cycles of assigning { f1,..., fi} with > b; - f; <p
j=1
and 0 < p < P,. Thus, for each f;,

i

o if Z bj . fj > D, Ci,p = Ui—1,p-
j=1

e Otherwise, Cj) =

aiv/fi}

, min{ci—l,paci—l,p—bifi +
fi=F;» Where F; € {F1,..., Fjr} as in Eqn 8.

The above steps can be called recursively until the solution
is found. The dynamic programming based algorithm can be
summarized in Algorithm 1.

Algorithm 1: Dynamic Programming Based Frequency
Assignment

Input: a;, b;: the coefficients in Eqns. 2 and 3

Output: C; ,: the minimum cycles given the power
budget < p.

Function: Find the minimum cycles.

begin

Initialize all the C; ,, to be 0;

for each f; do

for each Fj, do

for each p < P, do

if > b;-f; > p then
j=1

| Cip=Ci—1,;
else
Cip =min{Ci_1,p,Ci_1p—b, s, +

aiv/ [i}l ji=Fy

/x i=1,...,Ng %/
/* {Fla"'vFM} */

end

end
end

end

The time complexity of the above algorithm can be further
reduced to be linear. To accelerate the computation, a multi-
stage dynamic programming network (DPN) is designed to
solve the problem for each application ¢ with linear time
complexity. It is first constructed by mapping the terms in
the constraint (Eqn. 3) and objective (Eqn. 2) equations to the
weights of the vertices or edges. Then the DPN is traversed
to find a minimum weight path corresponding to the optimal
solution.

In the DPN, each vertex represents a different power budget.
An edge exists between two vertices in adjacent stages if
the power consumption of assigning the frequency equals
to the difference in the power budgets of the two vertices.
Each edge is assigned a weight by the term in Eqn. 2, i.e.,
minimum cycles by assigning frequency to a variable. If a
stage (corresponding to a tile) is not in the application’s
region, the stage will be bypassed.

With the DPN, finding the minimum weight path is equiv-
alent to an optimal frequency assignment. The traversal can
be done in parallel. Each vertex at current stage selects the
edge such that, the sum of the edge weight and the minimum
cycles achieved by the later stage is minimum. This sum
is transmitted back to vertices in the previous stage. In this
manner, after reaching the source, the minimum weight path
is found in linear time.

Fig. 1 shows the block diagram of APAT. The performance
model in Section III.A for each application will be set up first
with a regression model either online or offline. The DPN will
be constructed based on the performance-power model and
input power budget. Then the DPN is traversed to find the
optimal solution.

| Predict or detect
power budget at
time 7.

1 | T

DPN construction

Performance
model |

Find optimal solution

Fig. 1. The APAT system block diagram.

B. The dynamic programming network

The dynamic programming approach in above sub-section
can be run in a dynamic programming network. Fig. 2 shows
the transformation of the problem into a dynamic program-
ming network. Once the DPN is constructed, it only needs
minor update to remove some vertices and edges according
to current power budget.

Definition 1. Dynamic programming network. A dynamic
programming network is denoted as a graph DPN(V, E),
with V and E represent the sets of vertices and edges,
respectively.

e Each vertex is assigned with two properties, Cycle and
P, where Cycle (v; ;) denotes the minimum cycles given
the power budget P (v; ;) equal to j.

e An edge e; ;; is added between vertices (vi,j,vi+17k),
lf]+b1fz|flzp, = k, for | = 17...,M.

e The weight of an edge e; ;, = (vi;,viq1) is repre-
sented as wj; j . Wik = ai\/ﬁ\ﬁ:(j_k)/bi equals to
the corresponding term in Eqn. 2.

The above edge connection means, there is a path between
two adjacent vertices if the difference in the power budget
corresponding to them equals to the power consumption by
assigning frequency to the vertex between them.

Of the total of P x (IN+1) vertices in a DPN, the network is
organized as N 41 stages (as there are N frequency variables)
with each group consists of P vertices (corresponding to the
available power budget levels). Two dummy vertices, S and
D, are added before stage 1 and after stage N +1, respectively,
as in Fig. 2.

Note that if a stage ¢ (corresponding to a tile) is not inside
an application’s region, it is bypassed, i.e., connecting vertices
directly to those in the previous stage with the edge weight
set to be 0. This can be selected by a MUX as in Fig. 2.

C. Find the optimum solution

The DPN can be traversed to find an optimal solution as
follows.

e The edge e; ;1 is assigned with weight

Wi g = i fil f=G—) b)

where a; and b; are defined in Eqns. 2 and 3.
e Find a minimum weight path from S to D, which
corresponds to the optimal solution of the problem.

Note that f,,, with 1 < m < ¢ (of the stages proceeding
stage ¢) are assigned a value at stage ¢, while f, with ¢ <
n < N (stages after stage i) are yet to be assigned.

The weight of each edge equals to the corresponding term in
Eqn. 2 as shown in Fig. 2. When the power budget P, changes,

) i
minCycle=e ~,
Problem : ’V s
bi 'f, SP
fi€1F, i Fu

Stage N

Legend

() Adder

|E| Comparator

ﬂ: MUX

Vk.e;; i exists
between v;;and v;.y

From v;

Fig. 2. Transformation of the optimization problem to a dynamic program-
ming network. In total, there are P X (N + 1) vertices.

some vertices v; ; and the corresponding edges are removed
if the power budget of v; ; (i.e., j) exceeds F,. To find the
minimum weight path under the power constraint in linear
time, the following dynamic programming equations can be
calculated within N iterations [13] following a backward
moving procedure (from D back to S). At each stage, each
vertex calculates the following value, a modified version of
the Bellman equations [13].

Cycle Vi) =
y MIN(l)]) VYvit1,k,3 an edge e; jr between(v; j,viq1,x)
{wi7j7k’ + CyClerN (UH‘Lk)}
(10)

where Cyclepyrn (D) =0, and wy g, = wn p = 0, with
k € [1, P), i.e., the edges connecting S to the vertices in the
first stage and the vertices in stage N to D have a weight of
0.

Thus, the calculation of Eqn. 10 will become to find the
minimum weight path (optimal solution) under the power
constraint in IV steps as follows,

i=Ng,j=Py,k=P,

D

i=1,5=1,k=1

Nq
= min E a;\/ fi
fi€{F1,....Fm} =

Cycle®

MIN

(PATHg p) =

min

Wi, j,
i j kEPATHSs p

an

where PAT Hg p is the set of all the paths from S to D.
The optimal path from wv; ; to v;4;, at each vertex v; ;
(corresponding to the assignment of each frequency variable
fi by (j — u)/b;) along the minimum weight path can be

obtained as follows:

arg min
VYvit1,k,3 an edge e; j between(vi j,vit1,k)

{wi%k + CyCleLIN (UiJrl,k)}

Vitl,p =
(12)

where the optimal assignment of f; is £} = (j — u)/b;. In
this way, the optimal assignment of each frequency variable is
found and the system can be tuned to run under this frequency
configuration.

The pseudo-code in Algorithm 2 shows the traversal of the
DPN to find the minimum weight path from S to D. Both
DPN construction and traversal take N, iterations for each
application. Each iteration only involves add and compare
operations which could be done in one cycle. Thus, the worst
case run time is 2N, cycles.

Algorithm 2: FindMinWeightPath

Input: e; ; ;: the weight of each edge, for
i,7 €[1,N+1]and k € [1, P].
Output: Cycle (v; ;):the minimum cycles of each
vertex after assigning f;.

Function: Find the minimum weight path &
corresponding to the optimal solution.
begin
Initialize all the C'ycle (v; ;) to be oo, except
Cycle (D) = 0;
for stages i from N — 1 to 0 do
for each vertex v; ; do
for adjacent vertex v;11) do /* an
edge e; ;) connecting v;; and
Vit1k */
if
Cycle (UH_L]-) + w; ;) < Cycle (v; 5)
then

Cycle (v; ;) =

Cycle Ui+1,j) + Wi j i

fi= (G = k)/bi

end
end

end

end

V. EXPERIMENTAL RESULTS
A. Experimental setup

Experiments are performed using an in-house developed
event-driven many-core simulator [14]. Table I lists the con-
figuration of the many-core simulator and the mixes of the

k}benchmarks selected from PARSEC and SPLASH-2. Each of
the applications occupies a 4 x4 mesh region in the many-core
system. The weights of each application (Eqn. 5) is randomly
selected whose sum equals to 1.

In all the experiments, we select a 8 x 8 2D mesh as the
underline NoC topology. We compare the performance of the
proposed APAT against three other best known schemes: (1)
PGCapping [6], where both the number and the frequency of
tiles can be adjusted, (2) PEPON [4], where the frequency of
each processor and last-level cache bank can be adjusted, and
(3) DPPC [11], a linear programming based approach. In what

TABLE 1.

PARAMETERS USED IN THE SIMULATION

Number of processors

64 (MIPS ISA 32 compatible)

Fetch/Decode/Commit
size

17474

ROB size

64

L1 D cache (private)

16KB, 2-way, 32B line, 2 cycles, 2 ports, dual
tags

L1 I cache (private)

32KB, 2-way, 64B line, 2 cycle

L2 cache (shared)
MESI protocol

64KB slice/node, 64B line, 6 cycles, 2 ports

Main memory size

2GB

On-chip network parameters

NoC flit size 72-bit

Data packet size 5 flits

Meta packet size 1 flit

NoC latency router 2 cycles, link 1 cycle
NoC VC number 4

NoC buffer 5 x 12 flits

Workload mixes used as

multiple applications running in a single NoC

Mix-1

blackscholes, ferret, freqmine, swaptions

Mix-2 streamcluster, dedup, canneal, vips
Mix-3 barnes, raytrace, swaptions, vips
Mix-4 dedup, freqmine, fft, canneal
Error of the regression models
15 T T T

: : : : : : : :
I [nnet []proposed model

Normalized error (%)

Fig. 3. Comparison of the three models, linear regression (Im), neural
network (NNet) and the proposed model as in Eqn. 2. Each of the application
is runing on the 8x8 many-core system. All the errors (NRMSE) are
normalized to the mean value of the cycles.

follows, we will present the verification of regression model
of the performance vs. frequency first. Next the performance
of the proposed APAT is compared against that of related
approaches. In the end, the hardware cost and overhead of
the DP-based optimization are analyzed.

B. Precision of the performance model

Suitable performance model plays an important role in
the problem formulation. To justify the accuracy of the
performance model in Eqn. 2, we compare it against two
other approaches, the linear regression model (Im), and neural
network model (nnet). In the Im model, the execution time
is a linear combination of the frequencies of the tiles. In
the nnet model, the relationship of the execution time and
the frequencies of the tiles are found by an artificial neural
network. We use the Matlab neural network toolbox to train a
three stage neural network by varying the number of neurons
in the hidden layer. The metric used here is the normalized
root square mean squared error (NRMSE). Fig. 3 shows the
errors of the three regression models, where the proposed
regression model has shown significantly smaller error than
the other two.

Normalized execution time Normalized execution time

15 15

0.5 0.5

Normalized cycles

mix-1 mix-2 mix-3 mix—4 0 mix-Tmix-2 mix-3 mix-4
(@) (b)

| N APAT [PGCapping []PEPON [__]DPPC|

Fig. 4. Execution time of the mixes under power budget of (a) 150W and
(b) 70W.

150

Power (W)
1
i
L)

Day 1 Day 2 Day 3

Fig. 5. Solar energy data of three days in 2011 from ORNL website

C. Comparison of the power allocation methods

Fig. 4 shows the performance of the four methods when
the power budget is high, 150W as in (a), and low, 70W as
in (b). The execution time is measured as the total execution
time of all the applications in one mix. From Fig. 4, one can
see that APAT has the lowest execution time under both high
and low power budgets. When the power budget is high, APAT
records an average of 26 %, 20 % and 30 % less time than that
of PGCapping, PEPON, and DPPC, respectively. When the
power budget becomes low, on average, OPAD needs 19 %,
25 % and 16 % less execution time than that of PGCapping,
PEPON, and DPPC, respectively.

To support solar energy powered system, a power budget
estimator is used based on history to predict the power budget
for the next period [9]. The prediction time interval is set
to be 1 sec. The renewable energy can be smooth or highly
variable, depending on the environment. The power data in
Fig. 5 represent three days in different weather: a nice day, a
day with nice morning and poor afternoon, and a terrible day.
To see the real time power adaptiveness of the four methods,
Fig. 6 compares the four methods with a variable power
budget to mimic power budget from the renewable energy.
The closer the actual power consumption is to the input
power budget, the less the energy loss, and thus the better
performance. In Fig. 6 the power budget is more smooth,
representing a day of good weather. From Fig. 6 the power
consumption of PGCapping, PEPON, and DPPC does not
match the input power consumption and results in more energy
loss. The energy losses (defined as the input power budget
minus the power consumption and integrated over the time
shown in Fig. 6) of PGCapping, PEPON, and DPPC over
that of APAT are 11x, 4x, and 10x, respectively. In Fig. 7,
lots of “jitters” or variations are made to mimic a day of
poor weather. When the input budget variation is slow in
Fig. 7 APAT still achieves better matching than the other
three methods. The energy losses of PGCapping, PEPON,
and DPPC over that of APAT are 11.3x, 3.5%, and 10x,
respectively. Thus, APAT has the least energy loss.

Summary From the above experiments, APAT can have
lower execution time given the same input power budget com-
pared to three state-of-the-art methods, PGCapping, PEPON,

Input power budget & actual power consumption
T

\ \ \ \
9]
=
=}
[8

t (h)
Solar power budget APAT +rvivee PGCapping ' = = PEPON ' = - DPPC
Fig. 6. Input power budget with low variation frequency mimicking a day

of good weather and actual power consumption.

Input solar power & actual power consumption

100
g 80
60
40
20,

— SOlar

= = = PGCapping

Power (W)

Power

100 200 300

100 | e 002 100
g go| ™ = = PEPON g 80
2 60 % 60
o
% 40 & a0
20 20
0 100 200 300 0 100 200 300
(c) (d)
t (ms) t (ms)

Fig. 7. Input power budget with variation frequency mimicking a day of bad
weather and actual power consumption. The differences are shown between
the input power budget and (a) APAT, (b) PGCapping, (¢) PEPON and (d)
DPPC.

and DPPC. On the other hand, as APAT has much lower over-
head in power allocation, it is a beneficial method for many-
core systems in which the power budget varies rapidly. Power
consumption of APAT matches the input budget much better
than the other three methods, resulting in less energy loss.
Thus, APAT is suitable for online adaptive power allocation.

D. Hardware cost and runtime overhead

The hardware cost of the proposed APAT is mainly due to
the nodes in the dynamic programming networks. Each node
operation includes a 16-bit comparator and an adder. Each
node has an area of 121 ym? and consumes 20 W of power
(assuming switching activity of 0.5) using Synopsys Design
Compiler under 65nm TSMC library. As there are a total of
P x (N +1) vertices in DPN, for a system with 64 tiles and
P in Eqn. 3 normalized to 10, the whole DPN area can be
78650 pm? and consumes 13 mW of power. For reference,
a single 5 x 5 router with 2 virtual channels, flit size of 75
bits, and 4 flit-depth FIFO has an area of 145890 um2 and
consumes 8 mW of power. That is, the total area and power
consumption of the DPN is 53 % and 160 %, respectively, of
a single router. The power consumption of the whole DPN is
about 2% of the power consumed by the 64 routers.

The total run time of the APAT to allocate power online is
2N, cycles, where IV, is the tile number (number of frequency
variables) of application g. For an 16-tile application, only
32 cycles is needed. As a comparison, PGCapping, PEPON,

and DPPC each typically takes about 10 ~ 100 M cycles,
which is 6 to 7 orders of magnitude higher than that of APAT.
In APAT, the regression model takes 10° cycles to compute.
However, this is infrequently invoked; it only occurs at the
initialization or at update interval for model error correction
(typically, every 10 million cycles).

VI. CONCLUSIONS

In this paper, a power allocation algorithm was proposed to
optimize performance with a power budget limit in energy har-
vesting based many-core systems. A dynamic programming
approach is used which can run on a dynamic programming
network to solve the problem with linear time complexity.
The dynamic programming network is formed based on the
performance-power model. The optimal solution can be found
by traversing the network. This proposed algorithm can reduce
execution time up to 20 ~ 30% on average, compared to
three existing approaches, PGCapping, PEPON, and DDPC
with both smooth input power budget or power budget with
rapid variations. The proposed algorithm also has very low
run time, power and area overhead.

REFERENCES

[1] S. Borkar, “Thousand core chips: a technology perspective,” in Proc.
Design Automation Conf, pp. 746-749, ACM, 2007.

[2] M. Gorlatova, P. Kinget, I. Kymissis, D. Rubenstein, X. Wang, and
G. Zussman, “Energy harvesting active networked tags (EnHANTS)
for ubiquitous object networking,” IEEE Wireless Communications,
vol. 17, no. 6, pp. 18-25, 2010.

[3] C. Li, W. Zhang, C. Cho, and T. Li, “SolarCore: solar energy driven
multi-core architecture power management,” in Proc. IEEE Int’l Symp.
High Performance Computer Architecture, pp. 205-216, IEEE, 2011.

[4] A. Sharifi, A. K. Mishra, S. Srikantaiah, M. Kandemir, and C. R.
Das, “PEPON: performance-aware hierarchical power budgeting for
NoC based multicores,” in Proc. Int’l Conf. Parallel Architectures and
Compilation Techniques, pp. 65-74, ACM, 2012.

[5] S. Imamura, H. Sasaki, N. Fukumoto, K. Inoue, and K. Murakami,
“Optimizing power-performance trade-off for parallel applications
through dynamic core and frequency scaling,” Proceedings of the
RESoLVE, 2012.

[6] K. Ma and X. Wang, “PGCapping: exploiting power gating for power
capping and core lifetime balancing in CMPs,” in Proc. Int’l Conf.
Parallel Architectures and Compilation Techniques, pp. 13-22, 2012.

[71 C. Shen, X. Wang, W. Zhang, and F. Kang, “A high-performance three-
dimensional micro supercapacitor based on self-supporting composite
materials,” Journal of Power Sources, vol. 196, no. 23, pp. 10465-
10471, 2011.

[8] C. Li, A. Qouneh, and T. Li, “iSwitch: coordinating and optimizing
renewable energy powered server clusters,” in Proc. Int’l Symp. Com-
puter Architecture, pp. 512-523, IEEE, 2012.

[9] J.Lu, S. Liu, Q. Wu, and Q. Qiu, “Accurate modeling and prediction of
energy availability in energy harvesting real-time embedded systems,”

in Proc. Int’l Green Computing Conf., pp. 469-476, 2010.
[10] S. Liu, J. Lu, Q. Wu, and Q. Qiu, “Harvesting-aware power manage-
ment for real-time systems with renewable energy,” IEEE Trans. Very
Large Scale Integration Systems, vol. 20, no. 8, pp. 1473-1486, 2012.

[11] K. Ma, X. Wang, and Y. Wang, “DPPC: dynamic power partitioning
and control for improved chip multiprocessor performance,” [EEE
Trans. Computers, in press, 2013.

[12] C. M. Bishop, Pattern recognition and machine learning. Springer
New York, 2006.

[13] T. Mak, P. Cheung, K. Lam, and W. Luk, “Adaptive routing in network-
on-chips using a dynamic-programming network,” IEEE Trans. Indus-
trial Electronics, vol. 58, no. 8, pp. 3701-3716, 2011.

[14] J. Xue, A. Garg, B. Ciftcioglu, J. Hu, S. Wang, I. Savidis, M. Jain,
R. Berman, P. Liu, M. Huang, H. Wu, E. G. Friedman, G. Wicks, and
D. Moore, “An intra-chip free-space optical interconnect,” in Proc.
Int’l Symp. Computer architecture, pp. 94-105, ACM, 2010.

