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Abstract. Multimedia support appears on embedded platforms, such as
WAP for mobile phones. However, true multimedia applications require
both the computation power that only dedicated hardware can provide
and the flexibility of software implementations. To this end, we are in-
vestigating reconfigurable architectures, composed of an instruction-set
processor running software processes and coupled to an FPGA on which
hardware tasks are spawned by dynamic partial reconfiguration. This
paper focuses on two main aspects. It explains how separating communi-
cation from computation enables hardware multi-tasking and it describes
our implementation of a fixed communication-layer that decouples the
computation elements, allowing them to be dynamically reconfigured.
This communication layer is an interconnection network, implemented
on a Virtex FPGA, allowing fast synchronous communication between
hardware tasks implemented on the same matrix. The network is a 2D
torus and uses wormhole routing. It achieves transfer rates up to 77.6
MB/s between two adjacent routers, when clocked at 40 MHz. Intercon-
nection networks on FPGAs allow fine-grain dynamic partial reconfigu-
ration and make hardware multi-tasking a reality.

1 Introduction

Nowadays, numerous multimedia applications are emerging on portable devices
such as personal digital assistants (PDA) or mobile phones. Typical applications
such as MPEG players or 3D games are usually computationally intensive, pre-
venting them from being implemented on general-purpose embedded processors.
To achieve the minimal Quality of Service (QoS) required for these applications,
traditional designs of multimedia platforms contain dedicated hardware accel-
erators, which lack flexibility, or application specific instruction-set processors
(ASIP), which are limited to their specific application domains.

Based on our experience in reconfigurable systems [1], we believe that the
combination of instruction-set processors (ISP) with reconfigurable hardware is
the best trade-off for such a platform. The platform has to support true hard-
ware/software (HW/SW) multitasking, i.e. tasks are executed either on the ISP
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or on the reconfigurable hardware, a Field Programmable Gate Array (FPGA)
in our case. A hard real-time operating system (RT-OS) manages the applica-
tions by distributing the different tasks on the available resources. Our platform
is composed of a Compaq iPaqTM PDA, running RT-Linux [3] on its Strong-
Arm processor SA-1110 (206MHz) and controlling a Xilinx VirtexTM XCV800
running hardware tasks.

The applications running on our platform [2] are composed of several software
threads and of several hardware tasks. These HW and SW components must
therefore be able to inter-communicate, i.e. a specific HW communication layer,
compatible with SW communication, has to be designed.

Hardware resources are shared by dividing the FPGA into logical tiles of
coarse granularity, such as a JPEG decoder. However, the reconfiguration grain
is fine, i.e. an AES encryption module could replace the JPEG decoder. Tasks
can be dynamically instantiated in the tile matrix by partial reconfiguration.
Our communication-layer is a packet-switched Inter-Connection Network (ICN)
and is fixed in place to allow Dynamic Partial Reconfiguration (DPR).

This paper presents the use of on-FPGA interconnection networks to enable
fine-grain dynamic partial-reconfiguration. To this end, Sect. 2 develops how sep-
arating communication from computation allows hardware multitasking on FP-
GAs. Sect. 3 presents a simple packet-switched network that is used to create a
fixed communication layer. Sect. 4 details the implementation of our intercon-
nection network on the Virtex family. Specific issues about Virtex column-based
DPR are treated in Sect. 5. Sect. 6 discusses the performances of our reconfig-
urable System on Chip (SoC) platform. Finally, Sect. 7 concludes.

2 Separating Communication from Computation Enables
Fine-Grain Dynamic Partial-Reconfiguration

In order to do multitasking, the FPGA must be partitioned into an array of
identical tiles, each tile running a hardware task, equivalent to a software thread.
Whereas the granularity of the tiles is coarse, a JPEG decoder for example, the
reconfiguration grain is fine: the same tile can be configured to run an image
filter as well as a data encryption module. This approach differs from previous
works [4] where the FPGA is divided into simple computation elements, difficult
to manage by an OS and requiring specific component libraries.

The ability to dynamically reconfigure tasks depends on the control over
the boundaries between them. Indeed, with the traditional design-flow, if we re-
configure an AES encryption module in place of a Laplace edge detector, their
interfaces do not match and we have to perform a Place and Route (P&R) on
the whole FPGA. However, by adding constraints to the positioning of the inter-
face, the P&R phase is only required at design-time because it yields hardware
components with an identical input/output topology (Sect. 5).

Hardware tasks are thus encapsulated into a fixed layer providing them with
a unified way of communicating. This communication layer raises the abstrac-
tion level of the hardware blocks, allowing easy Intellectual Property (IP) block
integration.



Various fixed communication layers such as buses and on-chip interconnec-
tion networks can be used to this end. However, we prefer a packet-switched
network to a bus for three reasons. A simple bus is a major bottleneck because
its routing resources are shared by all connected blocks, whereas in a network
routing resources are distributed. A network is therefore easily scalable, whereas
the complexity of a bus arbiter increases with the number of blocks controlled.
Finally, networks are more power efficient than buses, because idle parts can be
powered off, whereas buses must always drive long lines.

3 Choosing a Packet-Switched Network for SoC
Reconfigurable Platforms

3.1 SoC Reconfigurable Platforms Require Specific Interconnection
Networks

One can think of an interconnection network as being an array of routers in-
terconnecting an array of processors (Fig. 1(a)). In general each processor has
direct access to a local memory, without using the ICN. Interconnection net-

P

R

M P

R

M P

R

M

P

R

M P

R

M P

R

M

P

R

M P

R

M P

R

M

R

R

R

R

R

RR

R

R

(a) (b)

Fig. 1. In an ICN (a), each processor (P) is connected to a router (R). Each processor
has access to local memory (M). In a 2D torus (b), each row and column of routers is
connected in a ring, reducing router complexity with respect to a 2D mesh.

works have been successfully used in the world of multi-processor computing,
such as the J-Machine [6], with various forms of architectures (k-ary n-cubes,
hyper-cubes, butterflies, crossbars) and routing policies (virtual cut-through,
wormhole, mad-postman switching) [9]. However, they are multi-chip circuits,
whereas for reconfigurable SoC we have to implement the whole network and all
the processors on the same FPGA ! The choice for our ICN is therefore dictated
by the need for low hardware overhead. A network, and therefore its complexity,
are described by two parameters: topology and routing algorithm [9].



3.2 The Interconnection Network has a 2D Torus Topology to
Limit Hardware Overhead

An FPGA is a 2-dimensional chip, so we naturally considered 2D network topolo-
gies. In a mesh-topology such as the one in Fig. 1(a) a router has to be able to
route in all directions: North, South, East and West. It is possible to reduce the
router complexity by using a similar topology, called a torus network (Fig. 1(b)).
Such a network folds the mesh along the horizontal and vertical directions and
therefore only requires routing along two directions, i.e. East and South. How-
ever, this complexity reduction comes at the expense of a 15% increase (for a
4 ∗ 4 folded torus) [7] in power consumption with respect to a mesh network.

3.3 The Network uses Wormhole Packet-Switching

The routing algorithm we use on our 2D torus is called Wormhole Routing [8].
It is a blocking, hop-based, deterministic routing algorithm. It uses relative ad-
dresses and thus does not require a global knowledge of the network. In wormhole
switching, message packets are pipelined through the network. This technique
relieves routers from buffering complete messages, thus making them small and
fast [9]. A message is broken into flits (flow control units). Flits come in two
types: header flits, containing routing information and data flits containing the
message itself.

The two header flits give the number of channels that must be traversed
respectively in the X and Y directions. Packets are routed first along the X
direction, then along the Y direction before reaching their target. The value in
the X header flit is decremented each time a router is traversed. When it reaches
zero, the X heading flit is discarded and routing starts on the Y dimension.
When Y equals zero, the message enters the destination hardware block.

3.4 Two Virtual Channels are Used to Avoid Deadlocking

Our network uses two time-multiplexed Virtual Channels (VC) to avoid dead-
locks. Deadlocks in an interconnection network occur when no message can ad-
vance toward its destination because all queues are full with messages not des-
tined to neighboring routers (Fig. 2(a)) [8]. Fig. 2(b) shows the virtual channel
usage on a 1D torus. Router 0 only sends messages on V C0, whereas the other
routers may initiate messages only on V C1. This virtual channel management
policy avoids deadlocks by breaking the torus into a spiral [9].

4 Architecture of our Interconnection Network

This section details our implementation of a packet-switched ICN on a Vir-
tex XCV800. However, the figures can be easily extrapolated to the Virtex II
XC2V6000, which is the target of our final demonstrator. Reconfigurable de-
signs should target the Virtex II, because it features 6 columns of block-RAMs
(BRAMs), allowing implementation of up to 6 routers, whereas the Virtex I has
only 2 (Sect. 5).
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Fig. 2. When message queues are full with messages destined to non-neighboring
routers (a) no message can be sent, the network is deadlocked. Using two virtual chan-
nels avoids dead-locking by breaking the 1D torus into a spiral(b).

4.1 Implementation Overview

The data-path width is chosen to maximize the network’s throughput. However,
it can not be too wide, because on the Virtex I family the BRAM element is
16-bit wide. Moreover, reconfigurable modules have to use the scarce number
of long-lines connecting tri-state buffers (Sect. 5) to connect routers together
and to get access to resources such as BRAMs or multipliers. We have chosen to
prioritize the availability to these resources. Therefore, on our network, messages
are segmented into 16-bit flits. The Maximum Transfer Unit (MTU) is fixed to
128 data flits per message, enabling a Virtex I to buffer two messages in a BRAM.
The ICN is fully pipelined and achieves, between two routers, a peak rate of 38.8
MBytes/s per virtual channel (Sect. 6), when clocked at 40 MHz.

Hardware tasks can be slow compared to the network’s bitrates. Therefore
to avoid blocking, the hardware tasks are decoupled from the network using
interfaces. These interfaces use dual-port BRAMs to buffer messages and work
as a network abstraction layer for the hardware task.

In our demonstrator, the ICN is connected to the memory bus of the Strong-
Arm SA1110 on a Compaq iPaq 3760. A specialized interface (IO interface)
resides at the border of the FPGA to enable communication with the CPU. The
IO interface uses control registers and interrupts to communicate with the CPU
and its message buffers are memory mapped to the SA1110. The scheduling of
the hardware tasks is done on the CPU.

Moreover, the reconfiguration of the Virtex is also done by the CPU, which
accesses the Virtex select-map port through some glue-logic. At 50MHz a Vir-
tex XCV800 can be reconfigured in less than 11ms (39.5ms on a XC2V6000).
For partial reconfiguration we can therefore go well under 5ms, which allows
hardware tasks to start in a time a user cannot perceive.



4.2 Router Architecture

On a 2D torus, rows are equivalent to columns, therefore the torus can be de-
composed into rows of 1D toruses connected to columns of 1D toruses. We can
chain two simple 1D routers to obtain a 2D router and produce a more modular
network.

A 1D-router has two input/output channels. A message entering a router can
either be forwarded along the current direction or sent orthogonally, either on
a column if the Y header-flit is non-zero, or into a hardware task. Each channel
is composed of a 16-bit data path and of 3-bit control signals. Two control-bits
are used to signal the presence of a message and its destination and the third is
a back-pressure signal (nack) used to block a message entering a busy router or
interface.

The routers handle two time-multiplexed VCs to avoid deadlocking (Sect. 3.4)
[9]. These VCs are interleaved, with one clock cycle each.

For efficiency, the router is fully pipelined. Because the data channels are
interleaved the control signals are also interleaved and precede data by one clock
cycle. The nack signal, used for blocking, is back-propagated along the message
path. It takes two ticks for a flit to get out of a router, therefore at each clock
cycle data is transmitted on, alternating VCs.

A 1D-router (Fig. 3), is composed of one input controller per channel, one
arbiter and an output-controller. The input controllers issue output requests
to a round-robin arbiter and decrement header-flits when routing. Each output
channel has a 2-flit deep buffer to be able to resume blocked messages. The
output controller is composed of a 2-input crossbar-switch and of the nack logic.
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Fig. 3. 1D-Router has 1 input controller per channel, 2-flit deep buffers are included
in the output controller/switch.



4.3 Architecture of the Interface between Task and Router

An interface decouples the hardware task from the network using DP-RAMs as
message buffers. The hardware task can then use independent data-width and
clock rates, allowing easy IP integration. The interfaces are designed to cope
with the sustained bit-rates required by the ICN and perform multiple-message
buffering to reduce network congestion.

Moreover the interface, called a ”net-cell”, provides the hardware task (or
IP-block) with high-level communication by means of routing tables. Hardware
tasks within an application communicate through a tuple composed of a logical
address and a port number, similar to the IP address and UDP port number for
the UDP protocol. Routing tables transform a destination logical address into
the number of X and Y hops on the network. The routing tables are updated by
the RT-OS to match the position of the IP-block in the network. Therefore, a
task does not need to know where it is situated in the network and whether the
tasks it communicates with are running in hardware or software. The RT-OS
adapts the routing tables after an IP-block reconfiguration. Therefore, there is
no need for complex run-time circuit re-routing as required in previous works [5]
and circuit integrity is guaranteed. Routing tables can also be modified at any
time without having to reset or stop the hardware task. This is very useful if
some other task from the same application is switched in or out of the network
as a function of the available resources and the QoS policy.

Our implementation of a net-cell buffers two input and two output messages
on a Virtex I and eight on the Virtex II. Each message buffer is complemented by
a control register bank giving the length and origin/destination of the message.
This high-level protocol information such as port number or net-cell origin is
piggy-backed in the Y-header flit and does not require extra bandwidth.

As Fig. 4 shows, our net-cell is composed of a process reading the local router
and steering the storage of messages in a circular linked-list of message buffers
and control registers. The hardware task is encapsulated in a block that always
presents the same fixed interface giving access to a message-in presentation layer
and a message-out presentation layer. Moreover this fixed block also gives ports
to extra local resources such as BRAMS or even multipliers on a Virtex II. The
presentation layers abstract the internals of the net-cell from the IP-block.

4.4 Architecture of the Interface between CPU and FPGA

Our reconfigurable platform is composed of an ISP (SA-1110) coupled to an
FPGA through its memory bus. A special interface, similar to a net-cell (c.f.
Sect. 4.3), has been designed to allow fast and efficient communication between
them by means of memory-mapped registers and interrupts.

The Virtex I implementation can buffer 8 input and 8 output messages in its
BRAMs. These are mapped in the memory space of the SA-1110 to allow fast
access. Indeed, on an iPaq 3760 the SA-1110 has a maximum access speed of up
to 103 MHz on its memory bus.
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Fig. 4. Net-cell encapsulates the hardware task and provides it with high-level com-
munication primitives (destination, port, message length).

5 Dynamic Partial Reconfiguration on Xilinx Virtex
FPGAs

The full design is composed of fixed router modules and replaceable IP modules.
The IP modules can be loaded dynamically, according to the user actions. When
a new IP module is to be loaded into the FPGA it will be placed into a free
predefined area, or will replace a module that is no longer needed. In order to be
able to dynamically reconfigure the design, partial bitstreams of the IP modules
must be available.

We have generated the partial bitstreams for the IP modules following the
Partial Reconfiguration (PR) methodology developed by Xilinx [10] (ISE tool
suite v4.2 and higher). According to the Xilinx methodology, the design has to
be partitioned in fixed and reconfigurable modules. Naturally, routers are fixed
and hardware tasks are the reconfigurable modules.

In principle, during the partial reconfiguration process all the modules can
continue working, except for the reconfigured module. However this is not possi-
ble in our design, because the network has to maintain communication between
modules. According to the PR methodology, the reconfigurable modules must
span the whole chip from top to bottom [10]. Therefore the 2D torus must be
folded into a 1D structure and consequently the communication between routers
has to traverse the reconfigurable modules (Fig. 5). The communication with the
reconfigurable modules can only take place through a ”Bus Macro” (BM). The
BM ensures the reproducibility of the design routing and is implemented using
tri-state buffers. The tri-state buffers force the routing to always pass through
the same places. At the same time they decouple the modules from each other
during reconfiguration, avoiding possible harmful transitory situations. In this
way, a 4 bit per row communication channel is possible between adjacent mod-
ules. This limitation comes from the current Virtex architecture and its limited
routing resources.



Block RAMs
Bus Macros

R
O

U
T

E
R

R
O

U
T

E
R

R
O

U
T

E
R

IP1 IP2 IP3

R
O

U
T

E
R

...

Fig. 5. Placement of routers and IP modules a Virtex II 6000.

The Virtex II 6000 has 96 rows, limiting the total number of bits passing
through the interface to 384. Moreover, the BMs only support unidirectional
signals, strongly limiting the minimum size of an FPGA that can be used to
implement our network.

The current Xilinx tool suite requires the modules to have widths in multiples
of 4 columns. A Virtex II 6000 has 88 columns which sets the upper limit of the
possible modules to 22. However, the main limitation in the number of modules
comes from the fact that all resources, such as BRAMs, present inside the area
reserved for a module can only be used by that module. Because the routers
use BRAMs, the maximum number of routers is given by the number of BRAM
columns available on the FPGA: 2 for a Virtex I and 6 for a Virtex II 6000.

6 Results

The use of an ICN brings in some hardware overhead (Tab. 1). The synthesis has
been performed with Synopsys Design Compiler on a Virtex XCV 800. For the
2∗2 torus network we implemented, the hardware overhead on a Virtex XCV 800
amounts to 35%, but drops to 9.5% on a bigger Virtex XC2V 6000. The ICN is

Table 1. Hardware overhead induced by an ICN.

Element XCV 800 (slices) XCV 800 (%) XC2V 6000 (%)

1D-Router 223 2.4 0.7

Net-Cell 259 2.8 0.8

FPGA-CPU Interface 716 7.6 2.1

1 ∗ 4 1D-Torus (estimated) 2385 25.4 7.1

2 ∗ 2 2D-Torus (estimated) 3227 34.8 9.5

fully pipelined and it takes 2 clock cycles to transmit one 16-bit flit on a given
VC. There are 128 data flits in a message and two extra header flits plus two



more for the message tail. The bandwidth between two adjacent routers, per VC
is therefore: (16− bit ∗ 20MHz ∗ 128/132)/8 = 38.8MBytes/s. On a 2 ∗ 2 torus
network, the total bandwidth is therefore 310.4MBytes/s. The throughput of
the network is however limited by the deterministic routing scheme. If each task
is simultaneously sending a message, the throughput drops to 20%. A technique
to overcome this problem is to clock the network faster than the hardware tasks.

7 Conclusions

This paper presents the three steps that enable us to use interconnection net-
works to perform fine-grain dynamic multi-tasking on FPGAs. In the first place,
one must separate communication from computation by using a fixed communi-
cation layer. To this end, interconnection networks are to be preferred over bus
architectures because they are more scalable and consume less power. Our inter-
connection network is a fully-pipelined 2D-torus that uses wormhole routing to
minimize hardware overhead and achieves 77.6MBytes/s at 40MHz. Finally,
dynamic partial reconfiguration is possible on Virtex FPGAs by folding the 2D-
network into a 1D-structure fitting the Virtex column-based architecture.

Interconnection networks enable fine-grain dynamic multi-tasking on FPGAs
for a low hardware overhead. Hardware tasks can be dynamically instantiated in
the network by partial reconfiguration, opening the way to a new class of hybrid
applications dynamically mixing hardware and software components.
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