
A Parallel Architecture for Secure FPGA Symmetric Encryption

E.J. Swankoski, R.R. Brooks
Applied Research Laboratory

Information Science & Technology Division
[ejs224,rrb5]@psu.edu

V. Narayanan, M. Kandemir, M.J. Irwin
Computer Science and Engineering Department

Pennsylvania State University
[vijay,kandemir,mji]@cse.psu.edu

Abstract

Cryptographic algorithms are at the heart of
secure systems worldwide, providing encryption for
millions of sensitive financial, government, and private
transactions daily. Reconfigurable computing platforms
like FPGAs provide a relatively low-cost, high-
performance method of implementing cryptographic
primitives. Several standard algorithms are used: the Data
Encryption Standard (DES), its cipher block chained
counterpart (3DES), and the Advanced Encryption
Standard (AES). Conventional high-performance
architectures utilize loop-unrolled approaches where
internal hardware functions are duplicated.

We propose a parallel architecture in which
internal hardware functionality is not duplicated but
reused. This creates a reasonably compact single block,
which is ideal for duplication. This allows multiple users
to share the same hardware, as spatial isolation is achieved
by the physical separation of individual encryption blocks.
Also, this allows for a greater degree of scalability, and
system throughput becomes limited only by available
physical resources and available I/O resources. We
conclude that this parallel encryption architecture allows
for comparable performance compared to conventional
pipelined architectures with greater flexibility and
hardware efficiency.

We show that a pipelined encryption system
cannot be used in a physically secure environment as it
does not protect the keys adequately. Temporal isolation
of the key is achieved using the parallel architecture.
Indirect key storage is accomplished using principles of
controlled physical random functions, which make all key
values fully transient and never hardware-resident. Thus
the parallel architecture achieves a high level of physical
and design security within the FPGA, protecting the key
from both invasive and non-invasive physical attacks.

1. Introduction

The recent evolution of powerful FPGA hardware
has made their suitability for cryptoprocessor systems
more evident. Additionally, most cryptographic algorithms

have ease of hardware design as a main design goal, which
makes them particularly well suited to implementation in
Verilog HDL. The high cost of cell-based and full custom
cryptography chips makes them prohibitive. Also, the
inefficiency and low throughput of software
implementations prevents their widespread use. FPGAs
present an ideal compromise in that they retain the
reconfigurability and control of software approaches while
also achieving high throughputs near those of custom-
designed ASICs.

All high-throughput cryptographic block cipher
implementations have utilized a pipelined approach, where
inner-round functions (such as those in AES or DES) are
duplicated. This allows for both high throughput and
efficient use of hardware. However, key control logic
becomes complex should one desire to change keys during
encryption, as either the pipeline must be emptied and the
key changed or additional logic is required to detect and
adapt to the change. We propose a high-throughput
parallel processing an alternative to pipelined
cryptoprocessor architectures. In addition to the pipelining
benefits of hardware efficiency and high throughput, it
allows for scalability and controllability of the resulting
architecture. Pipelined FPGA cores do not utilize the
entire chip; our parallel architecture allows for maximum
utilization given sufficient I/O resources.

Conventional pipelined implementations of the
AES standard can achieve data rates up to about 17.5 Gbps
[1]. Pipelined implementations of DES can achieve data
rates of up to about 10 Gbps, depending on both the target
architecture and the design entry method [1,2]. By
comparison, a high-speed software implementation of
DES would likely achieve a throughput of about 250
Mbps. Our parallel architectures have indicated
memoryless throughputs of 18.8 Gbps for AES, 9.00 Gbps
for DES and 8.631 Gbps for 3DES. Using the Virtex-II
Pro’s Block RAM resources for the AES substitution
boxes, we achieve a throughput of 17.7 Gbps. This paper
aims to evaluate the performance and implementation
details of parallel processing architectures based on the
AES and DES symmetric key block ciphers. Verilog HDL
modules are synthesized on the Virtex-II Pro FPGA
platform to evaluate performance and security of parallel
cryptoprocessing applications.

2. Related Work

Much work has been done in the area of high-
performance FPGA implementation of block ciphers. Most
work has been done on DES and AES; work on AES has
become more prominent recently since the adoption of the
Rijndael algorithm as the standard. Also, work on
pipelined DES has faded with its security becoming
weaker with the advent of greater computing power. This
is not to say that DES is no longer relevant – it is a fast
and economical solution for low-security encryption
applications. Triple DES is inherently sequential, and as
such is a logical extension of DES. Hence much of the
work related to DES and pipelined DES applies both
directly and indirectly to Triple DES.

Advances in computing power and FPGA
architecture have been reflected in the most recent
encryption designs, with many implementations achieving
throughputs of greater than 10 Gbps. The Xilinx
implementation using Jbits achieves significant throughput
advances by removing the key schedule and mode select
hardware from the datapath [2]. Thus, any desired key
change or mode switch requires a reconfiguration of the
chip. Though not a pure reconfigurable DES core, this
compromise allows its throughput to exceed the record-
holding Sandia National Laboratories DES ASIC chip [1].
Most AES designs are conventional pipelines similar to
pipelined DES. Throughput is dependent on the target
device, as a pipelined Virtex-E device achieves a
throughput of 4.12 Gbps [3] whereas a pipelined Virtex
device can achieve a throughput of 12.2 Gbps [4]. The
most recent high-performance AES implementation uses a
Virtex-II device, and achieves a throughput of 17.8 Gbps
[1]. Other factors affect performance as well, such as
design entry method (Verilog or VHDL), design
optimizations, and implementation optimizations. A
multithreaded approach proposed by Alam and Badawy
uses multiple pipelined units to achieve a throughput of
7.68 Gbps on a Virtex-II device; this approach is
inefficient because it requires a very large device to
achieve maximum performance [5]. Also, this leads to

underutilization of I/O resources as well as fragmentation
of the FPGA’s logic cells.

3. Overview of Parallel Architecture

We propose the parallel architecture as a method
of achieving maximum utilization of the FPGA’s logic
cells and I/O resources. Symmetric key block ciphers
consume a very large amount of silicon area with respect
to their I/O usage; for example, a memoryless 128-bit AES
encryptor proposed in [1] uses roughly 12 times more area
than an arbitrary 64-bit multiplier despite having the same
amount of I/O usage. Typically, larger FPGAs are required
for implementation of these block ciphers, and larger
FPGAs have by definition higher numbers of I/O pins.

As we will show, pipelined architectures require
considerably more area than a single parallel encryption
block; however, a fully parallel encryption architecture
requires more area than a pipelined architecture. Parallel
blocks allow a far greater degree of flexibility when
designing an encryption system as we will detail based on
its area flexibilities and security advantages. If two
pipelined architectures cannot fit within a given device, an
arbitrary amount of FPGA resources, both logic and I/O,
will remain unused as the pipelined block cannot be split.
However, individual parallel blocks are considerably
smaller and can be used to reduce fragmentation and
increase utilization of the FPGA’s logic and I/O resources.

We will also show that parallel architectures
provide both performance and utilization benefits in area-
constrained devices. If the available area is an integer
multiple of the area required for a pipelined architecture,
pipelined systems have a performance advantage.
However, for spaces larger or smaller than this, pipelined
systems become inefficient. Note we make the assumption
that additional I/O resources are always available.
However, in a black-and-white area comparison, pipelined
architectures are considerably smaller than fully parallel
architectures. This is unavoidable, as the key hardware
must be duplicated for each block. In the case of AES, the
key scheduling module is rather large; this represents a
direct tradeoff between area and security of the system.

Table 1: Summary of Related FPGA Encryption Implementations
Design Origin Implementation Target Architecture Throughput

Belfast, DSiP Labs Pipelined DES Virtex 3.87 Gbps
Xilinx Pipelined DES Virtex 10.7 Gbps

Sandia National Labs Pipelined DES ASIC 9.28 Gbps
Tampere University, DCS Lab Pipelined 3DES Virtex 364 Mbps

Rodriguez, Saqib, Diaz Pipelined AES Virtex-E 4.12 Gbps
GMU Pipelined AES Virtex 12.2 Gbps

Helsinki UT Pipelined AES Virtex-II 17.8 Gbps
University of Calgary Multithreaded AES Virtex-II 7.60 Gbps

It is important to both the security and
functionality of the system that the keys are kept separate.
This requires that each individual parallel block have its
own key hardware, which enforces spatial isolation of the
keys. This allows multiple independent encryptions to
process simultaneously. As a consequence, the parallel
encryption blocks suffer an area penalty with respect to the
pipelined architecture. It should be noted that is infeasible
to use shared key hardware among the parallel encryption
blocks since each block is limited by design to only one
output per cycle. Key sharing is impossible because even if
two encryption blocks share a common key, no two parallel
blocks are the same point in the encryption and hence
would require separate key values.

Figure 1 below details the differences between our
proposed parallel architecture and conventional pipelined
architectures. Each block in the parallel architecture is a
completely self-contained encryption unit. The dotted lines
indicate the smallest possible unit that can encrypt a block
of data. A fully parallel encryption architecture utilizes n
blocks, where n is the number of rounds of the specified
block cipher. Note that a pipelined implementation requires
all n functional blocks whereas a parallel block requires
only one. Thus we define a parallel encryption block as a
single round function block and a key control module.
Furthermore, we define a pipelined encryption as having
one key control module and n round function blocks. In the

parallel case, more than n blocks requires an additional I/O
allocation. The parallel encryption blocks each have their
own independent key hardware. This illustrates the
property of n independent encryption sessions utilizing n
independent keys. Also, it follows logically that only one
independent encryption block must be present for
encryption to proceed. We can see then that the use of n
independent keys requires a minimum of n parallel blocks.

Figure 2 below illustrates the performance
comparison of the fastest and most efficient published
implementation of AES-128 with our fully parallel
architecture. Note that this fully parallel architecture uses
Block RAMs to implement the byte substitution boxes. We
see that as expected, the pipelined implementation has
better best-case performance but is limited greatly in terms
of usability. It is clear that when area is constrained,
parallel architectures provide improved performance and
provide more efficient utilization of the FPGA’s resources.
The scalability of the parallel architecture makes it suitable
for smaller spaces. The pipelined architecture requires
approximately 11000 SLICEs and the parallel blocks each
require approximately 1300 SLICEs. In this case, where the
available area is a multiple of approximately 11000, the
pipelined architecture has an advantage. However, for
ranges larger and smaller than integer multiples of 11000,
the parallel architecture provides greater logic utilization as
well as increased overall system performance.

Figure 1: Overview of Parallel and Pipelined Architectures

Figure 2: Area / Throughput Comparison of Parallel and Pipelined Architectures

Throughput vs. Area

0

10

20

30

0 4000 8000 12000 16000 20000 24000

Area (Virtex-II SLICEs)

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Parallel Pipelined

4. Design of Parallel DES & 3DES Block Ciphers

The Data Encryption Standard (DES) was
adopted as U.S. Government standard in July of 1977. It
uses a 56-bit key and operates on 64-bit blocks of data.
Encryption and decryption are symmetric in that they use
the same functions with a reversed key schedule. The
basic operations of DES include permutations,
compressions, expansions, and shifts using 32-bit
operands. The data blocks in DES are split in half. There
are 16 rounds in DES; a round consists of 3 32-bit XOR
operations, three 32-bit permutations, and 8 4-bit
substitutions. Following an initial permutation, 15
identical rounds are performed; the last round is slightly
different. An ending permutation finishes the computation
[6,7,8]. The design allows for relatively easy pipelining, as
identical hardware could be duplicated 15 times in
succession. The design is not pipelined for several reasons,
the most notable being the ease of expansion to Triple
DES.

Though the initial and final permutations are not
essential for the security of DES, they are implemented.
The round function is implemented once and once only –
the same hardware is used 16 times per encryption or
decryption operation. This reduces area by approximately
a factor of 16 opposed to a larger, pipelined version, and it
has the added effect of greatly reducing the size and
complexity of the key management control logic. The
round function itself is self-contained. It is designed
combinatorially to allow for ease of lookup tables, which
optimizes both speed and area.

Figure 3: Expansion of DES to 3DES

The Triple DES block increases the security of
DES greatly by expanding the key length from 56 to either
112 bits (2 key Triple DES) or 168 bits (3 key Triple
DES). The Triple DES algorithm consists solely of three
single DES operations in sequence: encryption with key 1,
decryption with key 2, and encryption with key 3 to
produce the cipher text. Figure 3 above shows a pipelined-
block design used for Triple DES – the single DES
hardware is duplicated three times in succession. There is
minimal control logic involved – the valid output of the
first encryption block should trigger the operation of the
second decryption block, and the valid output of the
second decryption block should trigger the operation of
the final encryption block. Also, as a pipelined design, the

valid output of the first block indicates it can accept a new
block of data to encrypt. Despite the fact that single-block
latency is tripled, this allows for throughput levels
identical to single DES provided the keys do not change.

A single DES block (or Triple DES block) can be
replicated and scaled to create a controllable high-
throughput parallel cryptoprocessor. Conventional
pipelined architectures replicate the internal round
structure; typical DES pipelines include hardware for 16
rounds. The downside of this approach is the complexity
of key hardware, as more hardware is required to store and
select individual round keys. Additionally, sequential
encryptions are required to use the same key. In a multi-
user environment, this may not be desirable. A higher
security approach would allow each sequential encryption
the option of using any one of the keys (or key sets, in the
case of Triple DES).

A parallel architecture is proposed which, at a
small penalty to area, provides a high-throughput, high
security cryptoprocessing environment. A parallel
architecture as part of a network on a chip provides a high
level of controllability, as each data block in the
encryption queue can theoretically select its key or key set.
This architecture includes 17 separate parallel DES or
Triple DES blocks. Based on available space, more or less
than 17 blocks can be implemented; 17 was chosen as it
represents a zero-latency design. Additional I/O resources
would allow other configurations, such as 34, 51, and so
on; only designs with multiples of 17 have zero latency. It
is feasible to use an encrypted header to indicate the
desired key or key set; also, in the case of DES or Triple
DES, this header can select between encryption and
decryption. An initial key setup period is required; this
time period ranges from a minimum of one cycle to a
maximum of n cycles, where n is the number of parallel
blocks implemented. Note that key setup time is still one
cycle provided all parallel blocks use the same key. It is
feasible to use an encrypted header to indicate the desired
key or key set; also, in the case of DES or Triple DES, this
header can select between encryption and decryption. The
security of the header need not be equivalent to that of the
data itself; invalid or tampered headers would not
compromise the data.

5. Performance of Parallel DES & 3DES Block Ciphers

The single DES encryption block is a fast,
compact design. It was synthesized on the Virtex-II Pro
device to provide the highest performance. The Virtex-II
Pro is also very efficient in terms of area, as its logic cell
design differs substantially from earlier Virtex and Spartan
FPGA architectures. Below are the results of synthesis and
translation given 1) an iterative single DES block and 2) a
pipelined Triple DES block consisting of three single DES
blocks.

Table 2: Performance Details of DES and 3DES Implementations on Virtex-II Pro FPGAs
Algorithm Number of Parallel DES Blocks System Frequency Key Units Area (Slices) Throughput

3DES 3 195.198 MHz 3 819 734.9 Mbps

DES 1 203.376 MHz 1 343 765.7 Mbps

3DES 51 134.862 MHz 51 14525 8.631 Gbps

DES 17 140.627 MHz 17 5444 9.000 Gbps

The relatively small size of the Triple DES
implementation provides many interesting possibilities on
many FPGA architectures. Given that the Triple DES
implementation takes up 3.47% of the Virtex-II device and
each single DES encryption or decryption operation has a
latency of 17 cycles, each Triple DES Block could be
duplicated 17 times to create a high-throughput zero
latency cryptoprocessor. This has the additional security
benefit of allowing 51 separate keys at the added expense
of key setup time.

A high-level parallel design incurs some
hardware overhead, including the data input and output
multiplexers and tri-state buffers. The synthesized clock
frequency is greatly decreased to 134.862 MHz, resulting
in a throughput of 8.631 Gbps. After an initial key setup
period (where separate keys are loaded if required), there
is a constant zero-latency effect on the cryptoprocessor.
Similarly, a DES cryptoprocessor has a slightly higher
throughput at 9.000 Gbps with just over one third the area.
The performance of these implementations is second only
to the Xilinx JBits implementation; we have the advantage
of allowing dynamic key flexibility. A complex system of
this magnitude would likely not be ideal for a system on a
chip environment, but as a single-chip cryptoprocessor it
would be an excellent high-performance option. However,
high-capacity FPGAs and ASICs make the use of a
parallel processor a real option for a system on a chip. The
option to use either DES or Triple DES allows a tradeoff
between area and security with little effect on overall
throughput. The scaleable throughput Ts can be quantified
as follows:

Let N be the number of parallel blocks
implemented and Fsys be system clock frequency. We then
have

(Eq. 1 – DES & 3DES Throughput)
Ts =((64)*Fsys)*(N/17)

Note that the number of available I/O pins limits the
effective throughput, as each multiple of 17 requires an
additional 128 pins. Assuming a fixed number of pins for
control and system operation and an 8-bit data header,
each block of data requires 144 bits for input and output.
This allows up to 17 blocks at no penalty to throughput;
implementing more than 17 blocks with 144 I/O pins
results in no gain. It is logical that required I/O can be
quantified as follows:

Let PS be the number of system pins required for
proper operation. We then have

(Eq. 2 – Required I/O Pins)
PIO = (144)*╓ (N/17) ╖+PS

It follows that maximum throughput is attained when the
number of parallel blocks implemented is an integer
multiple of 17. Note that for Triple DES the single-block
latency is three times that of single DES; however, the
system latency is still zero. Given that the system latency
of a single DES parallel processor is zero, the latency of a
Triple DES processor arranged sequentially must also be
zero.

6. Design of Parallel AES Block Cipher

The Advanced Encryption Standard (AES) was
officially adopted in May of 2002 as the new encryption
standard. It is designed to operate on all combinations of
data input and keys with lengths of 128, 192, and 256 bits.
This design uses a data input length of 128 bits with a key
length of 128 bits. A block of data is placed into a 16-byte
array, and proceeds through 10 rounds of encryption.
Basic operations include byte substitutions, independent
row byte shifts, column Galois field multiplications, and
key additions. Row shifting and column multiplication use
32-bit operands (one 4 byte row or one 4 byte column)
[9,10]. Similar to DES, this design is not pipelined; it is
able to achieve reasonable throughput without doing so.
Also, space limitations within the context of a mid-size
FPGA make pipelining prohibitive. It should be noted that
AES is not symmetric for encryption and decryption. The
mathematical operations are different and require different
hardware [9].

The design uses reusable function hardware, with
minimal unnecessary hardware duplication. As was the
case with DES, the structure of AES lends itself logically
to reusable function block. The four row shifting
operations are separate modules, since each operation is a
separate shift. All row shifting is done through routing
channels; no logic resources are used. They are similar to
DES permutations, though entire bytes are shifted rather
than individual bits. The column multiplication operations
use four separate modules, allowing each column
multiplication to proceed in parallel. The byte substitution
is a 256x8 ROM lookup, and it is duplicated 16 times to

also allow maximum parallelism. Also, we can use Virtex
Block RAMs to implement the byte substitution tables.
This saves a considerable amount of space, since a fully
combinatorial implementation of a single encryption block
requires 1,280 Virtex-II SLICEs for substitution tables
alone. A dual-ported Block RAM is used to implement
two substitution boxes. This requires 8 Block RAMs per
block; a fully parallel block would use 80 Block RAMs.
The substitution boxes associated with the key scheduler
are implemented combinatorially for performance reasons.
All other internal functions are combinatorial. This allows
for a parallel architecture, which to some degree sacrifices
hardware efficiency for throughput.

The security of AES has been well researched
and is widely considered to be more secure than Triple
DES. Its longer key length adds to its security capabilities;
additionally, key lengths of up to 256 bits allow an even
higher level of security. In this design, the 10-round
structure and 128-bit block size allow the AES algorithm
to encrypt data much faster than a similar Triple DES
implementation. Also, AES provides more efficient use of
hardware; its performance and security capabilities far
offset its somewhat larger area.

7. Performance of Parallel AES Block Cipher

The AES implementation is ultimately not as
compact as possible, but duplicates some hardware to
achieve higher performance. The byte substitution ROM is
implemented 16 times; these modules are re-used each
round during encryption and decryption. An extremely
area-constrained design could theoretically use only one
byte substitution ROM with a huge penalty to throughput.
Also, the column multiplication function is repeated four
times. This is not as much of an issue, since a single
multiplication operation requires roughly half the area of a
single byte substitution ROM. The largest component is
the key scheduler, which is not duplicated. The bulk of the
key scheduler is comprised of four byte substitution
ROMs and four 32-bit XORs.

The encryption module is able to attain gigabit
throughput, but as a comprehensive module the system

must operate at or around the decryption frequency
(depending on synthesis results). The overall throughput is
reasonable at about 1.6 Gbps. Note that the decryption
operation initially incurs a 10 cycle key setup penalty once
per key lifetime. The keys are generated sequentially but
must be used in reverse order. It should also be noted that
encryption and decryption could occur in parallel with a
comprehensive module provided the inputs arrive on
subsequent cycles. Also, it is assumed that decryption key
setup occurs prior to the bulk of the encryption or
decryption operations. For this paper, we consider only
encryption performance.

Since the design does not waste hardware, we can
also construct a dedicated high-throughput AES
encryption processor based on duplicated single AES
encryption modules. Unconventional approaches have
been proposed before, including multithreaded and
pipelined approaches. This architecture is similar to a
multithreaded approach in that synchronization between
“threads” need only occur to prevent data collision at the
output. Assuming all modules are identical, collisions are
impossible, as a collision would require data arriving
simultaneously to two separate units. This is prevented
because the input bus is shared.

For a fully parallel encryption architecture, we do
not include any decryption modules. Additionally, the
inclusion of decryption would reduce the maximum
hardware utilization to 50%. At best, it would interleave
encryption and decryption operations, likely increasing the
overall latency for both operations.

Note that we include synthesis results for both a
single AES block and an AES encryption processor with a
hard-coded key. This is similar to the JBits
implementation of DES mentioned above, and the speed
gains are noticeable. Also, a significant area reduction is
achieved. However, this approach is impractical for two
reasons. The key security is weakened greatly, as all round
keys (including the key in its pure form) are stored in
either on-chip RAM or ROM. Thus direct memory attacks
could intercept the key itself. Also, changing the key
requires a partial reconfiguration of the device. This
expends a considerable amount of power.

Table 3: Performance of AES Encryption and Decryption on Virtex-II Pro FPGAs
Algorithm Number of Parallel Blocks System Frequency Area (Slices) Key Units Block RAMs Throughput
AES-128 10 146.798 MHz 23979 10 0 18.80 Gbps

AES-128 10 138.122 MHz 14013 10 160 17.77 Gbps
AES-128 2 (1 Encryptor / 1 Decryptor) 124.906 MHz 6184 2 0 1.599 Gbps

AES-128 1 147.973 MHz 2921 1 0 1.894 Gbps
AES-128 1 145.052 MHz 1319 1 16 1.857 Gbps

AES-128 10 150.621 MHz 20249 0 0 19.28 Gbps
AES-128 1 161.577 MHz 2370 0 0 2.068 Gbps

 As before, we can quantify the throughput of the
AES encryption processor as follows. Let N = number of
parallel blocks implemented and Fsys = system clock
frequency.

(Eq. 3 – AES Encryption Throughput)
TAES =((128)*Fsys)*(N/10)

Also, we quantify the throughput of non-parallel AES
decryption over time as follows:

(Eq. 4 – AES Decryption Throughput)
TDEC =((128)*Fsys)/(10+(10/OD))

where OD indicates the number of decryption operations
performed with the same key. Throughput of the
decryption operation approaches that of the encryption
operation provided the key does not change; the initial 10-
cycle latency becomes less significant over time.

Table 3 above presents a summary of our AES
implementations. We noted initially that the pipelined
memoryless AES implementation proposed by Jarvinen in
[1] is the fastest published implementation of the AES-128
algorithm with a reported throughput of 17.8 Gbps. Our
proposed memoryless parallel encryptor achieves a
throughput of 18.8 Gbps and the Block RAM parallel
encryptor achieves a throughput of 17.8 Gbps. Our parallel
architectures are larger; however, they are able to utilize
10 different keys. Also, as we emphasized before,
individual parallel blocks can be placed as area permits
where a pipelined architecture cannot fit.

Place and route results indicate a memoryless
parallel AES encryption processor with all its included
control logic can fit in a Virtex-II Pro 50 (XC2VP50). It is
large, occupying nearly all (90-97%) of the available
slices, but is able to achieve extremely high throughput.
This is impractical for a system on a chip. It is possible
that a system could utilize the embedded PowerPC and
Block RAM resources without requiring logic, but this is
unlikely. The implementation that uses Block RAM
resources to implement substitution boxes uses roughly
half of the device’s logic resources and roughly one third
of the device’s Block RAM resources. Thus this
architecture would be suitable for a system on a chip.
Larger Virtex-II Pro FPGAs would be able to integrate a
memoryless high-throughput AES processor as part of a
system on a chip; this is beyond the scope of this paper.

8. Security

Consider the key scheduling methods used in
symmetric key algorithms. The structure of AES has 10
rounds; DES and Triple DES have 17 rounds. Each round
has an associated key. Initially, DES and Triple DES use a
key derived from the original plaintext key via an
algorithmically specified permutation. Similarly, AES uses
the plaintext key for the first round. Both algorithms use
modified keys in each successive round.

The pipelined architectures duplicate the internal
functions of the block ciphers. This effectively prevents
temporal isolation of the key, as each round has a constant
key output. Essentially, in the structure of a pipelined AES
implementation, the key is always present in the chip in its
pure form, making it vulnerable to attack and interception
through differential power analysis. The same holds for
DES and Triple DES. It has been shown that pipelined
symmetric encryption methods are inherently insecure, as
they are vulnerable to differential power analysis attacks
[11].

A controlled physical random function allows
each chip to individually generate a device-specific
signature. These algorithms are based primarily on delay
analysis of self-oscillating loops to generate distinct
hardware signatures that are deterministic within the
context of a single device. Research has been done in the
implementation of controlled physical random functions in
FPGAs, and results indicate the signatures can be reliably
used to distinguish between separate devices [12,13].
However, these circuits have not yet been perfected. We
can use principles of these physical random functions to
create an obfuscated key.

To achieve temporal isolation of the key using
these signatures, we assume that the value of the physical
function is known. Also, we assume that is easily
accessible by the device’s control functions. We can
compute an XOR of the device’s signature with the
symmetric key; this value can be stored with relative
insecurity as it is useless outside the given device. Since
this is done at compile time, we do not need to input the
key to the device after configuration. Also, the physical
signature is not stored explicitly, and it must be computed
dynamically when needed. Any physical attempt to probe
the value will alter the electromagnetic characteristics of
the chip and hence affect the delay, obfuscating the
signature. Thus, we do not store the key explicitly; it is
virtually impossible to intercept the key through any
physical methods.

Within the context of symmetric-key block
ciphers, we can further detail the security effects of
physical random functions. DES and Triple DES perform
first a permutation of the key, followed by shifts and
finally the XOR application the encryption data. Since
shifts and permutations are bit-independent and do not
alter any values, we can perform the key operations on the
XOR value alone. We can replace the 2-input XOR of the
DES round operation with a 3-input XOR of the computed
key value, the encryption data, and the physical signature.
Thus, the actual key values only exist as transient values
and results. We incur an additional delay of a 3-operand
XOR instead of a 2-operand XOR; also, additional
hardware is required to shift and permute the physical
signature.

Similarly, AES encryption can avoid the
existence of the key at any given time. However, because
AES key values depend on the previous round’s interim
key value, storage is required. It is possible to store only
an XOR value; however, this adds two additional levels of
logic as XOR operations are required both prior to storage
of the key value and prior to computation of the new key
value. Since bit values are changed, there is no inherent
insecurity of storing interim key values. Also, since the
first operation involving the key uses the plaintext key, we
can apply a 3-input XOR to remove the existence of the
key from the device.

9. Conclusion

We have shown that a parallel architecture for
symmetric cipher encryption allows a higher degree of
control over conventional pipelined architectures. Also,
the parallel encryption architectures allow for multi-
gigabit throughput for all symmetric ciphers. Single-chip
performance of this parallel approach exceeds most
commercially available pipelined cores. The proposed
architecture uses parallel encryption blocks to achieve a
high throughput zero latency design.

The implementation of the algorithms and
encryption processors in Verilog HDL allow for efficient
implementation in both FPGA and ASIC mediums. Also,
unlike full-custom designs, optimizations and changes can
be made quickly and easily. This allows for a high degree
of scalability and controllability of the parallel
architecture. Additionally, through slight design
modifications we can show that the use of Block RAM for
substitution boxes improves relative performance.

We have shown also that a parallel architecture
provides a greater degree of security than conventional
pipelined architectures. We can use controlled physical
random functions to generate a device-independent
hardware signature. With some slight algorithmic
modifications, we can limit the existence of the key to
partial transient values, and hence we protect the
symmetric key from analysis and interception.

10. References

1. K. Jarvinen, M. Tommiska, and J. Skytta, “A Fully
Pipelined Memoryless 17.8 Gbps AES-128 Encryptor,”
Proceedings of the 2003 ACM/SIGDA Eleventh
International Symposium on Field Programmable Gate
Arrays, Pages 207-215.

2. C. Patterson, “High Performance DES Encryption in Virtex
FPGAs using Jbits,” IEEE Symposium on Field-
Programmable Custom Computing Machines, 2000, Pages
113-121.

3. F. Rodriguez-Henriquez, N.A. Saqib, and A. Diaz-Perez, “A
4.2 Gbit/s Single-Chip FPGA Implementation of AES
Algorithm,” Electronics Letters, July 2003, Pages 1115-
1116.

4. P. Chodowiec, P. Khuon, and K. Gaj, “Fast
Implementations of Secret-Key Block Ciphers Using Mixed
Inner- and Outer-Round Pipelining,” Proceedings of the
2001 ACM/SIGDA Ninth International Symposium on
Field Programmable Gate Arrays, Pages 94-102.

5. M. Alam, W. Badawy, and G. Jullienn, “A Novel Pipelined
Threads Architecture for AES Encryption Algorithm,”
Proceedings of the IEEE International Conference on
Application-Specific Systems, Architectures, and
Processors, 2002.

6. J.V. Oldfield and R.C. Dorf, Field Programmable Gate
Arrays: Reconfigurable Logic for Rapid Prototyping and
Implementation of Digital Systems. John Wiley & Sons,
1995.

7. B. Schneier, Applied Cryptography: Second Edition. John
Wiley & Sons, 1996.

8. “Data Encryption Standard,” Federal Information
Processing Standards Publication 46-2, December 30, 1993.

9. J. Daemen and V. Rijmen, “AES Proposal: Rijndael,” AES
Algorithm Submission, September 3, 1999.

10. “Advanced Encryption Standard,” Federal Information
Processing Standards Publication 197, November 26, 2001.

11. H. Saputra, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, R.
Brooks, S. Kim and W. Zhang, "Masking the Energy
Behavior of DES Encryption", Design Automation and Test
in Europe 2003, Munich, Germany.

12. P. Hamalainen, M. Hannikainen, T. Hamalainen, and J.
Saarinen, “Configurable Hardware Implementation of
Triple DES Encryption Algorithm for Wireless Local Area
Network,” 2001 IEEE International Conference on
Acoustics, Speech and Signal Processing, Pages 1221-1224.

13. B. Gassend, D. Clarke, M. van Dijk, and S. Devadas,
"Silicon Physical Random Functions", Proceedings of the
Computer and Communication Security Conference,
November 2002.

