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Abstract

Cryptographic algorithms are at the heart of 
secure systems worldwide, providing encryption for 
millions of sensitive financial, government, and private 
transactions daily. Reconfigurable computing platforms 
like FPGAs provide a relatively low-cost, high-
performance method of implementing cryptographic 
primitives. Several standard algorithms are used: the Data 
Encryption Standard (DES), its cipher block chained 
counterpart (3DES), and the Advanced Encryption 
Standard (AES). Conventional high-performance 
architectures utilize loop-unrolled approaches where 
internal hardware functions are duplicated. 

We propose a parallel architecture in which 
internal hardware functionality is not duplicated but 
reused. This creates a reasonably compact single block, 
which is ideal for duplication. This allows multiple users 
to share the same hardware, as spatial isolation is achieved 
by the physical separation of individual encryption blocks. 
Also, this allows for a greater degree of scalability, and 
system throughput becomes limited only by available 
physical resources and available I/O resources. We 
conclude that this parallel encryption architecture allows 
for comparable performance compared to conventional 
pipelined architectures with greater flexibility and 
hardware efficiency.

We show that a pipelined encryption system 
cannot be used in a physically secure environment as it 
does not protect the keys adequately. Temporal isolation 
of the key is achieved using the parallel architecture. 
Indirect key storage is accomplished using principles of 
controlled physical random functions, which make all key 
values fully transient and never hardware-resident. Thus 
the parallel architecture achieves a high level of physical 
and design security within the FPGA, protecting the key 
from both invasive and non-invasive physical attacks.

1. Introduction

The recent evolution of powerful FPGA hardware 
has made their suitability for cryptoprocessor systems
more evident. Additionally, most cryptographic algorithms 

have ease of hardware design as a main design goal, which 
makes them particularly well suited to implementation in 
Verilog HDL. The high cost of cell-based and full custom 
cryptography chips makes them prohibitive. Also, the 
inefficiency and low throughput of software 
implementations prevents their widespread use. FPGAs 
present an ideal compromise in that they retain the 
reconfigurability and control of software approaches while 
also achieving high throughputs near those of custom-
designed ASICs. 

All high-throughput cryptographic block cipher 
implementations have utilized a pipelined approach, where 
inner-round functions (such as those in AES or DES) are 
duplicated. This allows for both high throughput and 
efficient use of hardware. However, key control logic 
becomes complex should one desire to change keys during 
encryption, as either the pipeline must be emptied and the 
key changed or additional logic is required to detect and 
adapt to the change. We propose a high-throughput 
parallel processing an alternative to pipelined 
cryptoprocessor architectures. In addition to the pipelining 
benefits of hardware efficiency and high throughput, it 
allows for scalability and controllability of the resulting 
architecture. Pipelined FPGA cores do not utilize the 
entire chip; our parallel architecture allows for maximum 
utilization given sufficient I/O resources.

Conventional pipelined implementations of the 
AES standard can achieve data rates up to about 17.5 Gbps 
[1]. Pipelined implementations of DES can achieve data 
rates of up to about 10 Gbps, depending on both the target 
architecture and the design entry method [1,2]. By 
comparison, a high-speed software implementation of 
DES would likely achieve a throughput of about 250 
Mbps. Our parallel architectures have indicated 
memoryless throughputs of 18.8 Gbps for AES, 9.00 Gbps 
for DES and 8.631 Gbps for 3DES. Using the Virtex-II 
Pro’s Block RAM resources for the AES substitution 
boxes, we achieve a throughput of 17.7 Gbps. This paper 
aims to evaluate the performance and implementation 
details of parallel processing architectures based on the 
AES and DES symmetric key block ciphers. Verilog HDL 
modules are synthesized on the Virtex-II Pro FPGA 
platform to evaluate performance and security of parallel 
cryptoprocessing applications. 



2. Related Work

Much work has been done in the area of high-
performance FPGA implementation of block ciphers. Most 
work has been done on DES and AES; work on AES has 
become more prominent recently since the adoption of the 
Rijndael algorithm as the standard. Also, work on 
pipelined DES has faded with its security becoming 
weaker with the advent of greater computing power. This 
is not to say that DES is no longer relevant – it is a fast 
and economical solution for low-security encryption 
applications. Triple DES is inherently sequential, and as 
such is a logical extension of DES. Hence much of the 
work related to DES and pipelined DES applies both 
directly and indirectly to Triple DES.

Advances in computing power and FPGA 
architecture have been reflected in the most recent 
encryption designs, with many implementations achieving 
throughputs of greater than 10 Gbps. The Xilinx 
implementation using Jbits achieves significant throughput 
advances by removing the key schedule and mode select 
hardware from the datapath [2]. Thus, any desired key 
change or mode switch requires a reconfiguration of the 
chip. Though not a pure reconfigurable DES core, this 
compromise allows its throughput to exceed the record-
holding Sandia National Laboratories DES ASIC chip [1]. 
Most AES designs are conventional pipelines similar to 
pipelined DES. Throughput is dependent on the target 
device, as a pipelined Virtex-E device achieves a 
throughput of 4.12 Gbps [3] whereas a pipelined Virtex 
device can achieve a throughput of 12.2 Gbps [4]. The 
most recent high-performance AES implementation uses a 
Virtex-II device, and achieves a throughput of 17.8 Gbps 
[1]. Other factors affect performance as well, such as 
design entry method (Verilog or VHDL), design 
optimizations, and implementation optimizations. A 
multithreaded approach proposed by Alam and Badawy 
uses multiple pipelined units to achieve a throughput of 
7.68 Gbps on a Virtex-II device; this approach is 
inefficient because it requires a very large device to 
achieve maximum performance [5]. Also, this leads to 

underutilization of I/O resources as well as fragmentation 
of the FPGA’s logic cells.

3. Overview of Parallel Architecture

We propose the parallel architecture as a method 
of achieving maximum utilization of the FPGA’s logic 
cells and I/O resources. Symmetric key block ciphers 
consume a very large amount of silicon area with respect 
to their I/O usage; for example, a memoryless 128-bit AES 
encryptor proposed in [1] uses roughly 12 times more area 
than an arbitrary 64-bit multiplier despite having the same 
amount of I/O usage. Typically, larger FPGAs are required 
for implementation of these block ciphers, and larger 
FPGAs have by definition higher numbers of I/O pins.

As we will show, pipelined architectures require 
considerably more area than a single parallel encryption 
block; however, a fully parallel encryption architecture 
requires more area than a pipelined architecture. Parallel 
blocks allow a far greater degree of flexibility when 
designing an encryption system as we will detail based on 
its area flexibilities and security advantages. If two 
pipelined architectures cannot fit within a given device, an 
arbitrary amount of FPGA resources, both logic and I/O, 
will remain unused as the pipelined block cannot be split. 
However, individual parallel blocks are considerably 
smaller and can be used to reduce fragmentation and 
increase utilization of the FPGA’s logic and I/O resources.

We will also show that parallel architectures 
provide both performance and utilization benefits in area-
constrained devices. If the available area is an integer 
multiple of the area required for a pipelined architecture, 
pipelined systems have a performance advantage. 
However, for spaces larger or smaller than this, pipelined 
systems become inefficient. Note we make the assumption 
that additional I/O resources are always available. 
However, in a black-and-white area comparison, pipelined 
architectures are considerably smaller than fully parallel 
architectures. This is unavoidable, as the key hardware 
must be duplicated for each block. In the case of AES, the 
key scheduling module is rather large; this represents a 
direct tradeoff between area and security of the system.

Table 1: Summary of Related FPGA Encryption Implementations
Design Origin Implementation Target Architecture Throughput

Belfast, DSiP Labs Pipelined DES Virtex 3.87 Gbps
Xilinx Pipelined DES Virtex 10.7 Gbps

Sandia National Labs Pipelined DES ASIC 9.28 Gbps
Tampere University, DCS Lab Pipelined 3DES Virtex 364 Mbps

Rodriguez, Saqib, Diaz Pipelined AES Virtex-E 4.12 Gbps
GMU Pipelined AES Virtex 12.2 Gbps

Helsinki UT Pipelined AES Virtex-II 17.8 Gbps
University of Calgary Multithreaded AES Virtex-II 7.60 Gbps



It is important to both the security and 
functionality of the system that the keys are kept separate. 
This requires that each individual parallel block have its 
own key hardware, which enforces spatial isolation of the 
keys. This allows multiple independent encryptions to 
process simultaneously. As a consequence, the parallel 
encryption blocks suffer an area penalty with respect to the 
pipelined architecture. It should be noted that is infeasible 
to use shared key hardware among the parallel encryption 
blocks since each block is limited by design to only one 
output per cycle. Key sharing is impossible because even if 
two encryption blocks share a common key, no two parallel 
blocks are the same point in the encryption and hence 
would require separate key values.

Figure 1 below details the differences between our 
proposed parallel architecture and conventional pipelined 
architectures. Each block in the parallel architecture is a 
completely self-contained encryption unit. The dotted lines 
indicate the smallest possible unit that can encrypt a block 
of data. A fully parallel encryption architecture utilizes n
blocks, where n is the number of rounds of the specified 
block cipher. Note that a pipelined implementation requires 
all n functional blocks whereas a parallel block requires 
only one. Thus we define a parallel encryption block as a 
single round function block and a key control module. 
Furthermore, we define a pipelined encryption as having 
one key control module and n round function blocks. In the 

parallel case, more than n blocks requires an additional I/O 
allocation. The parallel encryption blocks each have their 
own independent key hardware. This illustrates the 
property of n independent encryption sessions utilizing n
independent keys. Also, it follows logically that only one 
independent encryption block must be present for 
encryption to proceed. We can see then that the use of n
independent keys requires a minimum of n parallel blocks.

Figure 2 below illustrates the performance 
comparison of the fastest and most efficient published 
implementation of AES-128 with our fully parallel 
architecture. Note that this fully parallel architecture uses 
Block RAMs to implement the byte substitution boxes. We 
see that as expected, the pipelined implementation has 
better best-case performance but is limited greatly in terms 
of usability. It is clear that when area is constrained, 
parallel architectures provide improved performance and 
provide more efficient utilization of the FPGA’s resources. 
The scalability of the parallel architecture makes it suitable 
for smaller spaces. The pipelined architecture requires 
approximately 11000 SLICEs and the parallel blocks each 
require approximately 1300 SLICEs. In this case, where the 
available area is a multiple of approximately 11000, the 
pipelined architecture has an advantage. However, for 
ranges larger and smaller than integer multiples of 11000, 
the parallel architecture provides greater logic utilization as 
well as increased overall system performance.

Figure 1: Overview of Parallel and Pipelined Architectures

Figure 2: Area / Throughput Comparison of Parallel and Pipelined Architectures
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4. Design of Parallel DES & 3DES Block Ciphers

The Data Encryption Standard (DES) was 
adopted as U.S. Government standard in July of 1977. It 
uses a 56-bit key and operates on 64-bit blocks of data. 
Encryption and decryption are symmetric in that they use 
the same functions with a reversed key schedule. The 
basic operations of DES include permutations, 
compressions, expansions, and shifts using 32-bit 
operands. The data blocks in DES are split in half. There 
are 16 rounds in DES; a round consists of 3 32-bit XOR 
operations, three 32-bit permutations, and 8 4-bit 
substitutions. Following an initial permutation, 15 
identical rounds are performed; the last round is slightly 
different. An ending permutation finishes the computation 
[6,7,8]. The design allows for relatively easy pipelining, as 
identical hardware could be duplicated 15 times in 
succession. The design is not pipelined for several reasons, 
the most notable being the ease of expansion to Triple 
DES.

Though the initial and final permutations are not 
essential for the security of DES, they are implemented. 
The round function is implemented once and once only –
the same hardware is used 16 times per encryption or 
decryption operation. This reduces area by approximately 
a factor of 16 opposed to a larger, pipelined version, and it 
has the added effect of greatly reducing the size and 
complexity of the key management control logic. The 
round function itself is self-contained. It is designed 
combinatorially to allow for ease of lookup tables, which 
optimizes both speed and area.

Figure 3: Expansion of DES to 3DES

The Triple DES block increases the security of 
DES greatly by expanding the key length from 56 to either 
112 bits (2 key Triple DES) or 168 bits (3 key Triple 
DES). The Triple DES algorithm consists solely of three 
single DES operations in sequence: encryption with key 1, 
decryption with key 2, and encryption with key 3 to 
produce the cipher text. Figure 3 above shows a pipelined-
block design used for Triple DES – the single DES 
hardware is duplicated three times in succession. There is 
minimal control logic involved – the valid output of the 
first encryption block should trigger the operation of the 
second decryption block, and the valid output of the 
second decryption block should trigger the operation of 
the final encryption block. Also, as a pipelined design, the 

valid output of the first block indicates it can accept a new 
block of data to encrypt. Despite the fact that single-block 
latency is tripled, this allows for throughput levels 
identical to single DES provided the keys do not change.

A single DES block (or Triple DES block) can be 
replicated and scaled to create a controllable high-
throughput parallel cryptoprocessor. Conventional 
pipelined architectures replicate the internal round 
structure; typical DES pipelines include hardware for 16 
rounds. The downside of this approach is the complexity 
of key hardware, as more hardware is required to store and 
select individual round keys. Additionally, sequential 
encryptions are required to use the same key. In a multi-
user environment, this may not be desirable. A higher 
security approach would allow each sequential encryption 
the option of using any one of the keys (or key sets, in the 
case of Triple DES).

A parallel architecture is proposed which, at a 
small penalty to area, provides a high-throughput, high 
security cryptoprocessing environment. A parallel 
architecture as part of a network on a chip provides a high 
level of controllability, as each data block in the 
encryption queue can theoretically select its key or key set. 
This architecture includes 17 separate parallel DES or 
Triple DES blocks. Based on available space, more or less 
than 17 blocks can be implemented; 17 was chosen as it 
represents a zero-latency design. Additional I/O resources 
would allow other configurations, such as 34, 51, and so 
on; only designs with multiples of 17 have zero latency. It 
is feasible to use an encrypted header to indicate the 
desired key or key set; also, in the case of DES or Triple 
DES, this header can select between encryption and 
decryption. An initial key setup period is required; this 
time period ranges from a minimum of one cycle to a 
maximum of n cycles, where n is the number of parallel 
blocks implemented. Note that key setup time is still one 
cycle provided all parallel blocks use the same key. It is 
feasible to use an encrypted header to indicate the desired 
key or key set; also, in the case of DES or Triple DES, this 
header can select between encryption and decryption. The 
security of the header need not be equivalent to that of the 
data itself; invalid or tampered headers would not 
compromise the data.

5. Performance of Parallel DES & 3DES Block Ciphers

The single DES encryption block is a fast, 
compact design. It was synthesized on the Virtex-II Pro 
device to provide the highest performance. The Virtex-II 
Pro is also very efficient in terms of area, as its logic cell 
design differs substantially from earlier Virtex and Spartan 
FPGA architectures. Below are the results of synthesis and 
translation given 1) an iterative single DES block and 2) a 
pipelined Triple DES block consisting of three single DES 
blocks.



Table 2: Performance Details of DES and 3DES Implementations on Virtex-II Pro FPGAs
Algorithm Number of Parallel DES Blocks System Frequency Key Units Area (Slices) Throughput

3DES 3 195.198 MHz 3 819 734.9 Mbps

DES 1 203.376 MHz 1 343 765.7 Mbps

3DES 51 134.862 MHz 51 14525 8.631 Gbps

DES 17 140.627 MHz 17 5444 9.000 Gbps

The relatively small size of the Triple DES 
implementation provides many interesting possibilities on 
many FPGA architectures. Given that the Triple DES 
implementation takes up 3.47% of the Virtex-II device and 
each single DES encryption or decryption operation has a 
latency of 17 cycles, each Triple DES Block could be 
duplicated 17 times to create a high-throughput zero 
latency cryptoprocessor. This has the additional security 
benefit of allowing 51 separate keys at the added expense 
of key setup time. 

A high-level parallel design incurs some 
hardware overhead, including the data input and output 
multiplexers and tri-state buffers. The synthesized clock 
frequency is greatly decreased to 134.862 MHz, resulting 
in a throughput of 8.631 Gbps. After an initial key setup 
period (where separate keys are loaded if required), there 
is a constant zero-latency effect on the cryptoprocessor. 
Similarly, a DES cryptoprocessor has a slightly higher 
throughput at 9.000 Gbps with just over one third the area.  
The performance of these implementations is second only 
to the Xilinx JBits implementation; we have the advantage 
of allowing dynamic key flexibility. A complex system of 
this magnitude would likely not be ideal for a system on a 
chip environment, but as a single-chip cryptoprocessor it 
would be an excellent high-performance option. However, 
high-capacity FPGAs and ASICs make the use of a 
parallel processor a real option for a system on a chip. The 
option to use either DES or Triple DES allows a tradeoff 
between area and security with little effect on overall 
throughput. The scaleable throughput Ts can be quantified 
as follows:

Let N be the number of parallel blocks 
implemented and Fsys be system clock frequency. We then 
have

(Eq. 1 – DES & 3DES Throughput)
Ts =((64)*Fsys)*(N/17)

Note that the number of available I/O pins limits the 
effective throughput, as each multiple of 17 requires an 
additional 128 pins. Assuming a fixed number of pins for 
control and system operation and an 8-bit data header, 
each block of data requires 144 bits for input and output. 
This allows up to 17 blocks at no penalty to throughput; 
implementing more than 17 blocks with 144 I/O pins 
results in no gain. It is logical that required I/O can be 
quantified as follows:

Let PS be the number of system pins required for 
proper operation. We then have

(Eq. 2 – Required I/O Pins)
PIO = (144)*╓ (N/17) ╖+PS

It follows that maximum throughput is attained when the 
number of parallel blocks implemented is an integer 
multiple of 17. Note that for Triple DES the single-block 
latency is three times that of single DES; however, the 
system latency is still zero. Given that the system latency 
of a single DES parallel processor is zero, the latency of a 
Triple DES processor arranged sequentially must also be 
zero.

6. Design of Parallel AES Block Cipher

The Advanced Encryption Standard (AES) was 
officially adopted in May of 2002 as the new encryption 
standard. It is designed to operate on all combinations of 
data input and keys with lengths of 128, 192, and 256 bits. 
This design uses a data input length of 128 bits with a key 
length of 128 bits. A block of data is placed into a 16-byte 
array, and proceeds through 10 rounds of encryption.  
Basic operations include byte substitutions, independent 
row byte shifts, column Galois field multiplications, and 
key additions. Row shifting and column multiplication use 
32-bit operands (one 4 byte row or one 4 byte column) 
[9,10]. Similar to DES, this design is not pipelined; it is 
able to achieve reasonable throughput without doing so. 
Also, space limitations within the context of a mid-size 
FPGA make pipelining prohibitive. It should be noted that 
AES is not symmetric for encryption and decryption. The 
mathematical operations are different and require different 
hardware [9].

The design uses reusable function hardware, with 
minimal unnecessary hardware duplication. As was the 
case with DES, the structure of AES lends itself logically 
to reusable function block. The four row shifting 
operations are separate modules, since each operation is a 
separate shift. All row shifting is done through routing 
channels; no logic resources are used. They are similar to 
DES permutations, though entire bytes are shifted rather 
than individual bits. The column multiplication operations 
use four separate modules, allowing each column 
multiplication to proceed in parallel. The byte substitution 
is a 256x8 ROM lookup, and it is duplicated 16 times to 



also allow maximum parallelism. Also, we can use Virtex 
Block RAMs to implement the byte substitution tables. 
This saves a considerable amount of space, since a fully 
combinatorial implementation of a single encryption block 
requires 1,280 Virtex-II SLICEs for substitution tables 
alone. A dual-ported Block RAM is used to implement 
two substitution boxes. This requires 8 Block RAMs per 
block; a fully parallel block would use 80 Block RAMs. 
The substitution boxes associated with the key scheduler 
are implemented combinatorially for performance reasons. 
All other internal functions are combinatorial. This allows 
for a parallel architecture, which to some degree sacrifices 
hardware efficiency for throughput.

The security of AES has been well researched 
and is widely considered to be more secure than Triple 
DES. Its longer key length adds to its security capabilities; 
additionally, key lengths of up to 256 bits allow an even 
higher level of security. In this design, the 10-round 
structure and 128-bit block size allow the AES algorithm 
to encrypt data much faster than a similar Triple DES 
implementation. Also, AES provides more efficient use of 
hardware; its performance and security capabilities far 
offset its somewhat larger area.

7. Performance of Parallel AES Block Cipher

The AES implementation is ultimately not as 
compact as possible, but duplicates some hardware to 
achieve higher performance. The byte substitution ROM is 
implemented 16 times; these modules are re-used each 
round during encryption and decryption. An extremely 
area-constrained design could theoretically use only one 
byte substitution ROM with a huge penalty to throughput. 
Also, the column multiplication function is repeated four 
times. This is not as much of an issue, since a single 
multiplication operation requires roughly half the area of a 
single byte substitution ROM. The largest component is 
the key scheduler, which is not duplicated. The bulk of the 
key scheduler is comprised of four byte substitution 
ROMs and four 32-bit XORs.

The encryption module is able to attain gigabit 
throughput, but as a comprehensive module the system 

must operate at or around the decryption frequency 
(depending on synthesis results). The overall throughput is 
reasonable at about 1.6 Gbps. Note that the decryption 
operation initially incurs a 10 cycle key setup penalty once 
per key lifetime. The keys are generated sequentially but 
must be used in reverse order. It should also be noted that 
encryption and decryption could occur in parallel with a 
comprehensive module provided the inputs arrive on 
subsequent cycles. Also, it is assumed that decryption key 
setup occurs prior to the bulk of the encryption or 
decryption operations. For this paper, we consider only 
encryption performance.

Since the design does not waste hardware, we can 
also construct a dedicated high-throughput AES 
encryption processor based on duplicated single AES 
encryption modules. Unconventional approaches have 
been proposed before, including multithreaded and 
pipelined approaches. This architecture is similar to a 
multithreaded approach in that synchronization between 
“threads” need only occur to prevent data collision at the 
output. Assuming all modules are identical, collisions are 
impossible, as a collision would require data arriving 
simultaneously to two separate units. This is prevented 
because the input bus is shared.

For a fully parallel encryption architecture, we do 
not include any decryption modules. Additionally, the 
inclusion of decryption would reduce the maximum 
hardware utilization to 50%. At best, it would interleave 
encryption and decryption operations, likely increasing the 
overall latency for both operations.

Note that we include synthesis results for both a 
single AES block and an AES encryption processor with a 
hard-coded key. This is similar to the JBits 
implementation of DES mentioned above, and the speed 
gains are noticeable. Also, a significant area reduction is 
achieved. However, this approach is impractical for two 
reasons. The key security is weakened greatly, as all round 
keys (including the key in its pure form) are stored in 
either on-chip RAM or ROM. Thus direct memory attacks 
could intercept the key itself. Also, changing the key 
requires a partial reconfiguration of the device. This 
expends a considerable amount of power.

Table 3: Performance of AES Encryption and Decryption on Virtex-II Pro FPGAs
Algorithm Number of Parallel Blocks System Frequency Area (Slices) Key Units Block RAMs Throughput
AES-128 10 146.798 MHz 23979 10 0 18.80 Gbps

AES-128 10 138.122 MHz 14013 10 160 17.77 Gbps
AES-128 2 (1 Encryptor / 1 Decryptor) 124.906 MHz 6184 2 0 1.599 Gbps

AES-128 1 147.973 MHz 2921 1 0 1.894 Gbps
AES-128 1 145.052 MHz 1319 1 16 1.857 Gbps

AES-128 10 150.621 MHz 20249 0 0 19.28 Gbps
AES-128 1 161.577 MHz 2370 0 0 2.068 Gbps



 As before, we can quantify the throughput of the 
AES encryption processor as follows. Let N = number of 
parallel blocks implemented and Fsys = system clock 
frequency.

(Eq. 3 – AES Encryption Throughput)
TAES =((128)*Fsys)*(N/10)

Also, we quantify the throughput of non-parallel AES 
decryption over time as follows:

(Eq. 4 – AES Decryption Throughput) 
TDEC =((128)*Fsys)/(10+(10/OD))

where OD indicates the number of decryption operations 
performed with the same key. Throughput of the 
decryption operation approaches that of the encryption 
operation provided the key does not change; the initial 10-
cycle latency becomes less significant over time.

Table 3 above presents a summary of our AES 
implementations. We noted initially that the pipelined 
memoryless AES implementation proposed by Jarvinen in 
[1] is the fastest published implementation of the AES-128 
algorithm with a reported throughput of 17.8 Gbps. Our 
proposed memoryless parallel encryptor achieves a 
throughput of 18.8 Gbps and the Block RAM parallel 
encryptor achieves a throughput of 17.8 Gbps. Our parallel 
architectures are larger; however, they are able to utilize 
10 different keys. Also, as we emphasized before, 
individual parallel blocks can be placed as area permits 
where a pipelined architecture cannot fit.

Place and route results indicate a memoryless 
parallel AES encryption processor with all its included 
control logic can fit in a Virtex-II Pro 50 (XC2VP50). It is 
large, occupying nearly all (90-97%) of the available 
slices, but is able to achieve extremely high throughput. 
This is impractical for a system on a chip. It is possible 
that a system could utilize the embedded PowerPC and 
Block RAM resources without requiring logic, but this is 
unlikely. The implementation that uses Block RAM 
resources to implement substitution boxes uses roughly 
half of the device’s logic resources and roughly one third 
of the device’s Block RAM resources. Thus this 
architecture would be suitable for a system on a chip. 
Larger Virtex-II Pro FPGAs would be able to integrate a 
memoryless high-throughput AES processor as part of a 
system on a chip; this is beyond the scope of this paper. 

8. Security

Consider the key scheduling methods used in 
symmetric key algorithms. The structure of AES has 10 
rounds; DES and Triple DES have 17 rounds. Each round 
has an associated key. Initially, DES and Triple DES use a 
key derived from the original plaintext key via an 
algorithmically specified permutation. Similarly, AES uses 
the plaintext key for the first round. Both algorithms use 
modified keys in each successive round.

The pipelined architectures duplicate the internal 
functions of the block ciphers. This effectively prevents 
temporal isolation of the key, as each round has a constant 
key output. Essentially, in the structure of a pipelined AES 
implementation, the key is always present in the chip in its 
pure form, making it vulnerable to attack and interception 
through differential power analysis. The same holds for 
DES and Triple DES. It has been shown that pipelined 
symmetric encryption methods are inherently insecure, as 
they are vulnerable to differential power analysis attacks 
[11].

A controlled physical random function allows 
each chip to individually generate a device-specific 
signature. These algorithms are based primarily on delay 
analysis of self-oscillating loops to generate distinct 
hardware signatures that are deterministic within the 
context of a single device. Research has been done in the 
implementation of controlled physical random functions in 
FPGAs, and results indicate the signatures can be reliably 
used to distinguish between separate devices [12,13]. 
However, these circuits have not yet been perfected. We 
can use principles of these physical random functions to 
create an obfuscated key.

To achieve temporal isolation of the key using 
these signatures, we assume that the value of the physical 
function is known. Also, we assume that is easily 
accessible by the device’s control functions. We can 
compute an XOR of the device’s signature with the 
symmetric key; this value can be stored with relative 
insecurity as it is useless outside the given device. Since 
this is done at compile time, we do not need to input the 
key to the device after configuration. Also, the physical 
signature is not stored explicitly, and it must be computed 
dynamically when needed. Any physical attempt to probe 
the value will alter the electromagnetic characteristics of 
the chip and hence affect the delay, obfuscating the 
signature. Thus, we do not store the key explicitly; it is 
virtually impossible to intercept the key through any 
physical methods.

Within the context of symmetric-key block 
ciphers, we can further detail the security effects of 
physical random functions. DES and Triple DES perform 
first a permutation of the key, followed by shifts and 
finally the XOR application the encryption data. Since 
shifts and permutations are bit-independent and do not 
alter any values, we can perform the key operations on the 
XOR value alone. We can replace the 2-input XOR of the 
DES round operation with a 3-input XOR of the computed 
key value, the encryption data, and the physical signature. 
Thus, the actual key values only exist as transient values 
and results. We incur an additional delay of a 3-operand 
XOR instead of a 2-operand XOR; also, additional 
hardware is required to shift and permute the physical 
signature.



Similarly, AES encryption can avoid the 
existence of the key at any given time. However, because 
AES key values depend on the previous round’s interim 
key value, storage is required. It is possible to store only 
an XOR value; however, this adds two additional levels of 
logic as XOR operations are required both prior to storage 
of the key value and prior to computation of the new key 
value. Since bit values are changed, there is no inherent 
insecurity of storing interim key values. Also, since the 
first operation involving the key uses the plaintext key, we 
can apply a 3-input XOR to remove the existence of the 
key from the device.

9. Conclusion

We have shown that a parallel architecture for 
symmetric cipher encryption allows a higher degree of 
control over conventional pipelined architectures. Also, 
the parallel encryption architectures allow for multi-
gigabit throughput for all symmetric ciphers. Single-chip 
performance of this parallel approach exceeds most 
commercially available pipelined cores. The proposed 
architecture uses parallel encryption blocks to achieve a 
high throughput zero latency design.

The implementation of the algorithms and 
encryption processors in Verilog HDL allow for efficient 
implementation in both FPGA and ASIC mediums. Also, 
unlike full-custom designs, optimizations and changes can 
be made quickly and easily. This allows for a high degree 
of scalability and controllability of the parallel 
architecture. Additionally, through slight design 
modifications we can show that the use of Block RAM for 
substitution boxes improves relative performance.

We have shown also that a parallel architecture 
provides a greater degree of security than conventional 
pipelined architectures. We can use controlled physical 
random functions to generate a device-independent 
hardware signature. With some slight algorithmic 
modifications, we can limit the existence of the key to 
partial transient values, and hence we protect the 
symmetric key from analysis and interception.
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