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Abstract—In this work, we review recent works comprising
an emerging field of intelligent transportation: behavior analysis
of vehicles. The ITS community has approached this topic
both from vehicle-based and infrastructure-based sensing. In
both cases, motion is the key indicator required for behavioral
characterization, with accurate long-term prediction being the
ultimate goal. However, the popular methods for behavior char-
acterization differ between the sensing methodologies. Vehicle-
based sensing tends to focus on spatio-temporal measurements
coupled with various features for accurate estimation of object
state. In contrast, infrastructure-sensing tends to avoid attempt-
ing high resolution estimation of vehicle state and prefers to
utilize patterns learned in aggregate for constrained estima-
tion. This review focuses on vision-based sensing and provides
highlights of state-of-the art methods used in surveillance, and
on-road vision modalities. We provide discussion and comment
on future directions in the field.

I. INTRODUCTION

Modern governments invest heavily in the installation and
maintenance road networks. Integral to economic health,
roadways allow transportation of goods to market, commut-
ing, and leisure travel. Worldwide, road transport costs are
currently growing at twice the rate of GDP [1]. A significant
cost associated with roadways derives from congestion and
traffic accidents. According to the World Bank, between 1
and 3 percent of global GNP is spent on costs associated
with traffic accidents [1]. Automotive collisions annually kill
tens of thousands of peoples are killed on the roads each year,
and most fatal crashes feature more than one vehicle [2]. As
research in sensing and environmental perception progresses,
there is great potential to save lives and cost, by developing
intelligent characterization of on-road behavior, and tools for
long-term prediction of critical events.

Given the large volume of data available, researchers have
looked at characterizing the behavior of vehicles on the
road from two distinct vantage points. Intelligent vehicles
researchers primarily use vehicles equipped with sensors, like
cameras, lidar, and radars, to sense and perceive the on-
road environment, tracking other vehicles on the road. Many
infrastructure and surveillance researchers mainly use static
cameras to track vehicles. These two bodies of research ex-
amine similar problem domains with different sets of data, the
primary distinction moving vs. static sensing. Interestingly,
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modeling and algorithmic approaches also differ between the
two bodies of research.

In this work, we review the characterization of on-road ve-
hicle behavior, from both the vehicle-base, and infrastructure-
based frames of reference. We highlight the differing assump-
tions, data fidelities, modeling, and algorithmic approaches
that researchers have taken in this quickly-evolving field.
With advanced sensors integrated both in infrastructure and
on vehicles, researchers have access to new insight and
opportunities to improve transportation quality in myriad
ways. We detail the state-of-the art in each of these domains,
and provide perspectives on future directions in this body of
research.

II. VEHICLE-BASED BEHAVIOR ANALYSIS

Analysis of the behavior of tracked vehicles has emerged as
an active and challenging research area. While considerable
research effort has been dedicated to on-road detection and
tracking of vehicles in images and video, the highest level of
semantic interpretation lies in characterizing the behavior of
vehicles on the road.

Research studies in this area take a variety of approaches
to characterize on-road behavior [3]. Certain studies try to
categorize observed vehicle behavior as normal or abnormal
[4]. Other studies try to identify specific maneuvers, such
as overtaking [5], turning [6], or lane changes [7]. Most
recently, studies in the literature have tried to make long term
classification and prediction of vehicle motion. Trajectory
modeling approaches try to predict vehicle motion up to 2
seconds ahead, based on models of typical vehicle trajectories
[8], [9].

Broadly speaking, we categorize studies that address the
characterization of on-road vehicle behavior based on four
main criteria. Firstly, we consider the role of context in the
analysis of on-road behavior, loosely defined to encompass
considerations such as urban driving vs. highway driving,
or intersection vs. non-intersection driving. Secondly, we
consider the identification of pre-specified maneuvers, such
as turning, lane change, or overtaking maneuvers of tracked
vehicles on the road. Thirdly, we consider the use of tra-
jectories, long-term sequences of positions and velocities, in
characterizing on-road behavior. Finally, we consider classi-
fication and modeling found in the literature.

A. Context

Context plays a vital role in many studies. Using context
can help narrow the scope of the sensing problem, while
increasing robustness. The motion model used in [14] models
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TABLE I
REPRESENTATIVE WORKS IN ON-ROAD BEHAVIOR ANALYSIS

Research
Study

Context-
Specific or
General?

Maneuver
Detection

Trajectory-
based?

Classification/ Inference Description

Diaz-Alonso
et al., 2008
[10]

General Overtaking
vehicles

No Template matching score Detection and tracking of overtaking vehi-
cles

Cherng et
al., 2009 [4]

Context-
specific

No No Neural network Dynamic visual model of typical on-road
behavior; saliency used to detect unusual
and critical situations.

Barth and
Franke, 2010
[6]

Context-
specific

Turning be-
havior

No Interacting multiple model
likelihood

Velocity and yaw-rate estimation used to
infer turning behavior of oncoming vehicles.

Geiger and
Kitt, 2010
[11]

Context-
specific

No No Support vector machine Histograms of scene flow used to classify
intersection vs. non-intersection driving en-
vironment.

Hermes et
al., 2010
[12]

Context-
specific

No Yes Augmented particle filter Vehicle motion is matched to 44 prototypes
using QRLCS distance.

Sivaraman
et al., 2011
[13]

Context-
specific

No Yes hidden Markov model Unsupervised clustering of observed on-
road trajectories.

Kasper et al.,
2011 [7]

General Lane change No Dynamic Bayesian net-
work

Dynamic Bayesian network is used to pre-
dict lane changes of other vehicles.

Garcia et al.,
2012 [5]

General Overtaking
vehicles

No Optical flow direction, in-
tensity

Optical flow is used to detect overtaking
vehicles.

the distribution of vehicles in the image plane, using it as a
prior probability on vehicle detections. The vehicle detection
in [14] can be viewed as a detection-by-tracking approach,
enabled by spatio-temporal modeling of the driving context.
In [11], histograms of scene flow vectors are used to classify
the driving environment as intersection or non-intersection
driving, modeling the driving context using spatio-temporal
information. In [4], a dynamic visual model is developed of
the driving environment, with saliency alerting the system to
unusual and critical on-road situations.

B. Specific Maneuver Identification

A body of work has been dedicated to the detection of
specific maneuvers of vehicles on the road. In [10], overtak-
ing behavior is detected, by detecting vehicles in the blind
spot of the ego-vehicle. Overtaking behavior is specifically
detected in [15], this time with the camera pointing forward,
and vehicles detected as they overtake in front of the ego-
vehicle. In [5], overtaking behavior is also detected in front of
the ego-vehicle, using a fusion of vision and radar. Overtaking
behavior is also detected in [16], also for vehicles in front of
the ego-vehicle. In these studies, the overtaking maneuver is
detected by virtue of detecting the vehicle, as the search space
includes only vehicles that are in the process of overtaking.

By contrast, specific maneuvers are identified in other
works via inference on tracking information. In [17], the
turning behavior of tracked vehicles is identified by mea-
suring the yaw rate using extended Kalman filtering. Using
the yaw rate in the vehicle motion model, the system is able
to detect turning behavior. In [6], turning behavior is further
addressed, using interacting multiple models to characterize
the motion of the oncoming vehicle. The model with the
highest likelihood, based on observations, characterizes the

turning behavior of the oncoming vehicle, with a transition
probability handling change of states. Turning behavior is
addressed in [18] by solving the vehicle’s pose, with respect
to the ego vehicle using clustering of 3D points.

C. Trajectory Analysis

The use of vehicle trajectories, to characterize and learn on-
road vehicle behaviors, has emerged in the past few years. A
trajectory is typically defined as a data sequence, consisting
of several concatenated state vectors from tracking, meaning
an indexed sequence of positions and velocities over a given
time window. Using a time window of 1 second, for example,
can mean trajectories consisting of 25-30 samples, depending
on the frame rate of the camera.

D. Classification and Modeling

On-road vehicle behavior is modeled in [19] as a Markov
process, and inferred using a dynamic Bayesian network,
based on tracking observations. However, the experimental
evaluation is performed using simulation data. In [7], the lane
change behavior of tracked vehicles is modeled using a dy-
namic Bayesian networks, and the experiments are performed
on real-world vision data.

In [20], variational Gaussian mixture modeling is used
to classify and predict the long-term trajectories of vehi-
cles, using simulated data. In [13], highway trajectories are
recorded using stereo-vision, and clustering is performed
to model the typical trajectories encountered in highway
driving, with classification performed using hidden Markov
modeling. In [8], trajectories are classified using a rotation-
invariant version of the longest common subsequence as the
similarity metric between trajectories. Vehicle trajectories are
used to characterize behavior at roundabouts in [12], using the
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QRLCS metric to match observed trajectories to a database
of pre-recorded trajectories. Similar work is carried out in
[21] for vehicles at intersections.

In studies that explicitly classify vehicle behavior, we see
a preponderance of generative modeling. In [20], Gaussian
mixture modeling is used, which provides distribution over
the prediction, complete with a point-estimate [the condi-
tional mean], and a covariance to convey uncertainty. In [6],
the likelihood of the interacting multiple model tracking is
used to classify the tracked vehicle’s turning behavior, com-
plete with a transition probability. In [7], Bayesian networks
are used for classifying the vehicle’s behavior, and predicting
the vehicle’s lane change. In [13], hidden Markov modeling
is used to model each of the prototypical trajectories, learned
using clustering. In [19], the vehicle behavior is also mod-
eled as a Markov process, with observations coming from
the vehicle’s instantaneous state vector. Table I highlights
some representative works in vision-based on-road behavior
analysis.

III. INFRASTRUCTURE-BASED BEHAVIOR ANALYSIS

Early infrastructure systems were installed to collect tra-
ditional traffic parameters – density, flow, speed – used
by transportation engineers to manage capacity. Recently
there has been a shift towards the use of video sensors
[22], [23] due to rich information content in video, vastly
improved computer vision processing, and the desire to have
video available for monitoring at transportation management
centers.

Recently, there has been a major push in the vision commu-
nity to move away from instantaneous counts and measure-
ments and better utilize the vast amount knowledge encoded
in traffic video feeds. In this vein, research has focused on
data mining, machine learning, and pattern recognition to
leverage the big data in transportation more effectively. A
key constraint in behavior understanding algorithm design
from infrastructure video arises from far-field surveillance.
Typically, video resolution is low and vehicles are small
in size making it extremely difficult to extract complex
descriptors such as pose with real accuracy. Instead, only
simple features such as position and velocity, can be used to
characterize behavior.

A. Unsupervised Contextualization

One shortcoming of kinematic and dynamic motion models
for predicting future state evolution in time is their perfor-
mance typically degrades quickly with increasing prediction
time-horizons. This is particularly apparent when motion is
complex (e.g. u-turn) or when some internal state or intention
motivates motion (decision to turn at an intersection). In
these cases, the dynamic models are not able to be precisely
modeled. By observing motion, over time the typical motion
patterns can be learned and used as a priori knowledge for
prediction. The advantage of these techniques is that they are
generally applicable and do not require manual re-training for
new scenes or scenarios.

Motion pattern learning research can be divided into
two categories 1) trajectory-based and 2) motion-based.
Trajectory-based algorithms augment the typical vehicle de-
tection and tracking analysis pipeline with an additional
trajectory learning module while motion-based algorithms do
not rely on accurate tracking (just motion primitives) to learn
patterns.

B. Trajectory Patterns

The key questions that arise in trajectory learning are how
to compare trajectories of varying length and how to ensure
that all semantically meaningful patterns are extracted in a
completely unsupervised fashion. Various trajectory specific
similarity measures (or distances) have been proposed to
make trajectory clustering compatible with traditional cluster-
ing algorithms. Comparisons have shown that the clustering
algorithm is not as important as selection of the type of
similarity measure [24]. However, it is still unclear how to
best extract meaningful patterns, however, recently iterative
clustering techniques are studied to enable time dependent
patterns that are able to adapt to new data and changing
conditions [25]–[27].

The growing hidden Markov model is utilized in [25] in
order to have an online adaptive model that changes with
conditions rather than based on a fixed observation time.
Voronoi tessellation is used to build up a topological map of
spatial states which are then connected through the growing
HMM. Rather than explicitly model trajectory patterns, this
work looks at the probability of goals (the eventual endpoint
of a trajectory) and gives a distribution of look ahead states.
Interestingly, the patterns can be learned incrementally and
in parallel with prediction.

In [28], a three level hierarchical learning framework was
developed to robustly cluster and model trajectory patterns.
The first level accounted for the goals (entries and exits) of
the scene, the second level performed spectral clustering of
spatial trajectories, while the final level modeled the result-
ing clusters with HMMs that included spatial and dynamic
information. This system provided a cluster adaption scheme
based upon maximum likelihood linear regression as well as
a batch update but did not have a true incremental learning
framework to handle time-varying patterns.

Non-parametric Bayesian modeling in the form of a dual
hierarchical Dirichlet Process (Dual-HDP) has been utilized
for unsupervised trajectory analysis and semantic region
modeling [26]. In this approach, trajectories were considered
as documents and the trajectory observations words and both
the number of activity categories (patterns) and semantic
regions (shared sub-patterns) were automatically learned from
the data. This was further extended to the Dynamic Dual-
HDP to allow for dynamic update of models and online
detection of abnormal activities. In addition, this worked
showed results from both vision-based trajectories as well
as radar tracks demonstrating the general applicability of
trajectory learning.

978-1-4799-2914-613/$31.00 ©2013 IEEE 1774



In [29], object tracking is performed but each observation
is treated independently. The image space is vector quantized
based on the density of track points resulting in a Voronoi
tessellation with each cell representing an alphabet entry.
Trajectories are then remapped into strings using the P-
spectrum kernel to count common substrings for graph cuts
spectral clustering to provide an behavior hierarchy.

Very recent work by Hu et. al [27] also used the Dirich-
let process mixture model (DPMM) to cluster, model and
retrieve trajectories in an incremental fashion. Further, the
time-varying information contained in a trajectory is modeled
using the time-sensitive Dirichlet process mixture model
(tDPMM) over sub-trajectories.

For more historical perspective, readers are directed to the
2008 survey on trajectory learning [30].

C. Motion Grouping

The previous section highlighted a number of methods
that were able to learn scene context from observation of
trajectory data. However, the quality of those methods are
highly dependent on robust tracking of vehicles which is
inherently difficult in general due to noise, changing lighting
conditions, shadows, and occlusion. Another class of un-
supervised learning methods have utilized low-level motion
cues which can be easily obtained, such as optical flow, and
focused instead on developing more complex modeling to
group motion into behavior. These motion based learning
techniques borrow from topic-model literature used for web-
based document clustering literature [35]. Video is segmented
into clips (a document) and each clip can be described
with a small vocabulary of words (motion vectors) and the
collection of words expresses the topics inherent in the video
clip (the prevalent behaviors) [27], [31]–[34]. These topic
models are unsupervised and learn through co-occurrence of
visual features without manual labeled training examples. In
addition topic models are hierarchical Bayesian models that
can model simple actions and more complicated ones jointly
at various hierarchical levels which make them well suited
for general application in various infrastructure settings.

In [31], dense optical flow vectors are computed as motion
descriptors to avoid tracking. Video is divided into 1 sec clips
and all optical flow vectors are clustered using k-means into a
mixture of Gaussian distributions. Mixture components were
treated as nodes in a graph connected though time based
on a reachability criterion that relied on a constant motion
model between proximal clips. The resulting Gaussian chains
defined the distribution of a motion pattern were used for
inference based on Kullback-Leibler divergence.

A two level Latent Dirichlet Allocation (LDA) topic model
was used to learn scene behaviors. The first level learned
single-agent motion while the second LDA level used the
first level output to learn interactions over multi-agents. This
hierarchy enabled anomaly detection at both levels for every
video frame rather than for clips [32].

In 2012, a framework to trade-off computational complex-
ity of the Bayesian topic model processes with scalability for

large datasets was introduced [33]. This work used a fast and
simple rank-1 robust principle component analysis (RPCA-
R1) for foreground pixel detection. The counts of foreground
pixels in 16×16 blocks was used as input words to a DPMM
for learning. The DPM provided scalability to large datasets
through incremental learning and inference.

In [34], a word-document hierarchical topic model is used
to model video clips of optical flow words. Sparse topical
coding (STC) is used to efficiently represent the clips with
only a sparse set of motion patterns.

The interested reader is directed to the recent review of
topic models for action recognition by Wang [35] for more
complete treatment.

IV. DISCUSSION AND FUTURE DIRECTIONS

A. On-Road Behavior Analysis

On-road behavior analysis is a relatively immature, but
rapidly developing area of research. Advances in this area
seek to address issues such as identification of maneuvers,
characterization of vehicle behavior, and long-term motion
prediction. Only in the past few years have vehicle detection
and tracking methodologies become sufficiently mature to
enable the exploration of these deeper questions.

In characterizing vehicle behavior, a major challenge will
be in identifying erratic, abnormal, or aggressive driving by
other vehicles. While identifying specific maneuvers can be
formulated as a well-defined problem, abstractly character-
izing another vehicle’s behavior remains an open question.
Given the tracking of vehicles with respect to their own
lanes, weak cues such as a vehicle’s veering within its
lane, or crossing over lane boundaries could be used. More
likely, research studies will try to characterize normal driving
behavior for a given context in a data-driven manner, and
identify abnormal trajectories by measuring the model fit of
an observed vehicle trajectory [13].

Long term motion prediction requires an estimate of the
vehicle’s motion 1-2 seconds, or 25-50 frames, ahead of time,
outside the capabilities of conventional filtering techniques.
Long-term motion classification and prediction will involve
further research into learning and modeling of vehicle tra-
jectories. An enhanced understanding of vehicle trajectories
will allow on-board systems to infer the intent of other
vehicle’s drivers, based on sequential tracking measurements
from vision-based systems.

There should be movement towards understanding the
motion and behavior of other vehicles as independent traffic
agents. To this end, we foresee learned trajectory models
working in concert with established tracking approaches like
interacting multiple models. A full vehicle motion under-
standing engine would include multiple trackers with distinct
motion models to estimate vehicle state in the short-term,
interacting multiple models to identify vehicle maneuvering
in the medium term, and trajectory learning to predict vehicle
motion in the long term. Associated issues, such as data
windowing, and online model updates, will also need to be
addressed.
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TABLE II
REPRESENTATIVE WORKS IN INFRASTRUCTURE BEHAVIOR ANALYSIS

Research Study Input Data Classification/ Inference Description
Vasquez et al., 2008 [25] Trajectory growing HMM Online adaptive modeling of the different ways to move from

scene goals.
Saleemi et al., 2010 [31] Optical Flow GMM Gaussian flow distributions are learned for video clips and chained

together across clips to define a pattern distribution.
Morris and Trivedi, 2011
[28]

Trajectory HMM Three-level learning hierarchy accounting for goals, spatial paths,
and dynamic behaviors.

Wang et al., 2011 [26] Trajectory Dynamic Dual-HDP Dynamic Dual-HDP non-parametric Bayesian model to automat-
ically model activity categories and semantic regions without
specifying the number of topics and with online update of model.

Song et al., 2011 [32] Optical Flow LDA Two level LDA topic model learned first for single-agent motion
which is input to second level LDA for multi-agent interactions.

Rana et al., 2011 [33] Foreground
Pixels

DPMM Fast rank-1 robust PCA used for foreground detection with counts
of pixels in blocks used as input for DPMM learning which
enables incremental learning and inference.

Noceti and Odone , 2012
[29]

Trajectory Common Strings Image space quantized with Voronoi tessellation to build an
alphabet for representing a trajectory as a string.

Fu et al., 2012 [34] Optical Flow LDA Sparse topical coding used for efficient learning and representation
of the topic model.

Hu et al., 2013 [27] Trajectory tDPMM Dirichlet process mixture model is used for unsupervised clus-
tering and modified to handle temporal structure and ordering
inherent in a trajectory sequence.

B. Infrastructure-Based Behavior Analysis

Perhaps the most natural extension to traditional traffic
analysis one can envision with the use of video technology
is advanced conflict analysis. Rather than waiting for rare
collision events (and annual reports that may lack critical
information), with traffic cameras, critical locations can be
monitored in real-time. Safety can then be analyzed in a
proactive manner based on the interactions between vehicles.
A hierarchy can be constructed utilized to classify interac-
tions based on the interactions with the rare collisions on the
top, the safe interactions on the bottom (the large majority),
and conflicts in the middle. Conflicts, the situation when two
vehicles could collide without intervention, can be used as a
surrogate safety measure [36].

Surrogate safety analysis is only possible with accurate
prediction of future events. Prediction is difficult because of
the complex dynamics and control with vehicular traffic; a
driver will change the kinematic state based on an internal
plan or intentions. Numerical techniques, such as Markov
Chain Monte Carlo or multiple hypothesis tracking, can be
used to enumerate many possible future outcomes as well
as attempting to guess the driver intention, however, these
are computational expensive [37]. Instead of complex motion
models, patterns learned from motion or trajectory clustering
can be used to generate likely future trajectories. These
clusters would represent the possible intentions of a driver.

It is noteworthy to mention that the increased emphasis in
trajectory pattern analysis for driving behavior understanding
has been fueled by the emergence of two popular datasets:
1) NGSIM [38] and 2) MIT intersection [39]. These datasets
have been used by many of the cited papers for behavior
prediction and anomaly detection. This sharing of benchmark
data is incredibly important for improving research results
because it provides fair comparison and lowers the barrier of

entry into the area.

C. Combining Infrastructure and Vehicle-Based Analysis

The promise of new vehicle to vehicle (V2V) and vehicle
to infrastructure (V2I) communication technology will usher
in a new age of cooperative algorithms. Processing and anal-
ysis will be shared between vehicles and the infrastructure to
provide enhanced environmental perception and situational
awareness. For example, in simulation, intersection cameras
with wide-area coverage have be used to augment the blind-
spots in an in-vehicle camera system to improve warning
systems [40].

Work is already underway using floating car data to learn
about behaviors. Public willingness to share GPS data from
phones and navigation systems, will provide massive data
to be mined for insight into flow and congestion, while
providing rich behavioral information. This data could be
used for personalized reports of traffic patterns or directed
advertisements. But, it can also be used in aggregate to learn
trends – most popular routes between destinations, crime
prevention [41], [42], etc.

V. CONCLUDING REMARKS

This manuscript has reviewed recent progress in un-
derstanding traffic behavior both from vehicle-based and
infrastructure-based sensing. We have reviewed the state-of-
the art in each domain, contrasting data resolution, modeling,
and algorithmic approaches between the two problem do-
mains. We have also provided perspective on future directions
in vehicle-based behavior characterization, infrastructure-
based behavior characterization, and open questions in the
integration of data from each domain. The authors believe
that this will be a fertile research ground in coming years, and
that there are ample opportunities to integrate infrastructure
and vehicle-based analysis.
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