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Abstract— This work presents a vision-based vehicle tracking
system with an improved method for automatically obtaining
turning movement counts at intersections. Improved accuracy is
obtained for intersections of varying difficulty through cooper-
ation between complimentary counting modules. When vehicle
tracking is robust, a typical zone comparison module quickly
accounts for predefined image regions. When vehicle tracking
is broken due to occlusion or noise, a trajectory comparison
module utilizing the least common subsequence distance is able
to count the broken trajectories using the typical scene paths.
Experimental evaluations during evening peak hours at two
different intersections show an 15% average improvement at
two intersections where the trajectory comparison module is
in use 22% of time. Finally, counts of five working days are
compared for another intersection in 15 minute intervals to
highlight the system’s operational utility for turning behavior
analysis at high temporal resolution.

I. INTRODUCTION

An important research effort in Intelligent Transportation
Systems (ITS) is the development of automated systems that
monitor flow of traffic and generate traffic information. These
traffic monitoring systems regularly use computer vision
since video is high in information content which enables
more concurrent applications than traditional spot sensor
such as loop detectors. For example, with vision techniques
it is possible to provide flow, speed, vehicle classification,
and detection of abnormalities at the same time [1].

Many vision-based traffic monitoring systems have been
proposed [1]–[6]. Pioneering work in 1997 presented a real-
time tracking system that utilized vehicle sub-features for
robustness against occlusion [2]. Fast background subtraction
methods have been used to detect moving regions and track
vehicles through bipartite graph association [3] and is now
a favorite technique for traffic monitoring. Tracking systems
have been extended to also classify the road objects. Simple
classification between cars and non-cars was performed
using the dimensions of detected vehicles [3]. A dispersion
parameter has been used to distinguish between vehicles and
pedestrians [4]. More detailed distinctions between 8 differ-
ent vehicle classes has been performed using region shape
descriptors [1]. More recently, vision systems have addressed
behavior monitoring and understanding. Intersection accident
and collision detection has been performed using detection
bounding boxes [5] and hidden Markov model chains [6].

Even with increased processing power and improved vi-
sion techniques, there are very few works that explicitly
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address turning movement (TM) counts at intersections. TM
counts are a fundamental measurement for transportation
engineers. They are used for a variety of intersection analy-
ses, including traffic operations analyses, intersection design,
and transportation planning applications [7]. In addition, TM
counts are needed for developing optimized traffic signal
timings leading to various benefits such as fuel consumption
reduction, air pollution reduction, travel time improvement
and anticipated vehicle crash reduction [8].

Traditionally, the TM counts are obtained by field obser-
vations where technicians observer an intersection and hand
count the number of vehicles. Robust automated counting
methods are required because manual counting is labor
intensive, limited in number of locations, and budgets do
not exist for data collection for large projects [8]–[10].

TM count systems for road design should provide high
accuracy as well as long time operation for providing average
daily traffic patterns [8]. Most TM counting systems use the
same basic zone definition framework [11]–[13] and they
count a turn based on the zones traversed. The SCOCA
system [11] performs hybrid region and feature-based track-
ing based of background subtraction while also classifying
vehicles. TM counts were collected based on entrance and
exit zones of the trajectories. These zone techniques are
simple but are ineffective when a vehicle is not tracked well
resulting in poor zone localization and low accuracy in TM
counting.

In this paper, a new vehicle tracking system for TM count-
ing at intersections is presented which benefits high accuracy
as well as long time operational usage. TM count accuracy is
improved by specifically handling broken trajectories through
the cooperation of the standard zone comparison module
and a more detailed trajectory comparison module. When
tracking is successful, the zone module is used. However,
when tracking fails due to noise or occlusion, the trajectory
module uses typical paths to characterize the most likely
TM. This cooperative counting system improves performance
even without the need for implementing more complicated
occlusion handling techniques in the tracker. To demonstrate
the long term operational usage of our system, the system
collects TM counts 12 hours a day over five days of a week
to compare the usage characteristics in 15 minute increments.

The paper is organized as follows: Section II presents the
vehicle tracking system and Section III describes the cooper-
ating turning count modules, Section IV shows experimental
evaluation, and Section V presents concluding remarks.
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Fig. 1: Vehicle tracking and counting system

II. VEHICLE TRACKING SYSTEM

The vehicle tracking and counting system is shown in Fig.
1. Tracking is the key step for intersection analysis and is
detailed below.

A. Vehicle Detection

Vehicle detection is performed using a standard adap-
tive background subtraction modeling technique. The image
background is modeling using Gaussian mixtures [14] to
address lighting changes. Moving objects (cars) are detected
as pixels that do not fit any of the K background Gaussian
models. The foreground image is processed using morpho-
logical operations for clean up and each moving regions is
characterized through connected component analysis. Each
foreground blob has morphological shape measurements
taken m={centroid, area, perimeter, convex hull area, eccen-
tricity, orientation, best fit ellipse parameters} for use during
tracking.

B. Vehicle Tracking

Tracking is performed using a detection-track mapping
matrix. The mapping matrix is a modification of a bipartite
graph to use nearest global matching instead of detection
bounding box overlap [15]. This is a two column matrix
with detections in the first column and a match from the
tracks in the second column.

In order to find a match and update a track, a detection
must fit both a dynamic model and an appearance constraint.
Vehicle dynamics are modeling using a constant velocity
Kalman filter where the state matrix consists of the bounding
box and velocity. The predicted location of a track and the
centroid of a detection must be within a small error in order
for the detection to match the trajectory dynamic model.
In addition to matching the dynamics, the appearance of a

Fig. 2: Complete tracks (black) versus incomplete or unde-
fined tracks (red). The red trajectories cannot be accurately
counted using simple zone comparison

detection must match that of a track for association. The
appearance model is used to resolve matching ambiguities
that may arise during dense traffic situations and occlusions
and ensures appearance consistency along a trajectory. The
similarity of a trajectory is determined by the L2 norm of a
detection measurement md and track mt.

C. Track Maintenance

Tracks are maintained using a greedy match algorithm
that associates the detection that is closest both in dynamics
and appearance first. When a detection does not match the
existing tracks in the track list, a new track is created. If an
existing track does not find a detection for 5 frames, it is
marked for deletion. The small frame window allows track
numbering to remain consistent even after short disappear-
ances such as during occlusion.

III. COOPERATING TURNING COUNT MODULES

TM counting can be improved through cooperation of
different counting methods. A zone comparison module
examines which image regions are traversed. Unfortunately,
this simple method does not work well in the following
situations:

1) When a track is incomplete as might occur when two
vehicles move from a stop bar in unison and cannot
be distinguished until they get separated.

2) When the centroid of trajectory falls into an undefined
region due to various noise sources (e.g. occlusion or
poor background subtraction).

The trajectory comparison module complements the zone
module by addressing these situations by considering the full
trajectory for counting purposes.

A. Zone Comparison Module

Predefined regions in the intersection image, called zones,
are defined manually to specify the four cardinal directions
{north, south, east, west} and the central intersection. The
zones are defined based on the set of lines drawn on
the stop bars of each intersection direction. A prototype
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Fig. 3: Intersection 1 zones

Fig. 4: Intersection 2 zones

intersection is given in Fig. 2. The zones are used to define
a regular sequence (RS) set, that is, the set of acceptable
zone traversals. For example, {1,5,2} indicates a westbound
left. During tracking, the vehicle location is mapped to
a zone using the set of line equations. The tracker only
keeps record or transitions between zones (when the current
tracked zone changes) to build the track zone sequence. If
the resulting zone sequence exists in the regular sequence set
for the intersection, a counter for the associated TM count
is incremented. A zone flag is set to indicate if tracking was
successful for cooperation with the trajectory module.

Examples of the zones for two intersections are displayed
in Figs. 3 and 4. The first intersection (INT1) has 5 re-
gions defined using four coordinates. The second intersection
(INT2) also has 5 regions but required an extra line to
distinguish the separated right-turn in the lower left of the
image. The complete RS set for each of the two intersections
is given in Table I. Notice not all TM have a sequence in
INT1 and INT2 has also some two zone sequences due to
the configuration of the intersection.

B. Trajectory Comparison Module

Although counting by zone comparison is simple, it is
unsuccessful when the obtained sequence of zone numbers
is not member of the RS. This happens during undesired
situations like occlusion. Fig. 2 highlights some of the
difficulties when using zone comparison. The trajectories in
black are complete and can be counted using zones. The red
trajectories all have some issue that would cause the zone
module to fail. The top left trajectory has sequence {1, 6, 2}
and goes through an undefined region 6. The bottom left
sequence {1, 5} stops in zone 5 and never goes to an exit
zone. Finally, the rightmost track has sequence {5, 3, 5, 2},
suffering due to occlusion and noisy measurements.

If the RS set cannot be used and the zone flag is not
set, the trajectory comparison module will go into effect.
This module examines the entire trajectory and compares it
with the typical paths in the scene. The typical paths could
be learned in a variety of ways such as through clustering
observations [1] or even predefined by hand drawing similar
to with zone definition. In this work, the paths are defined
by the first complete trajectory to traverse each of the entries
in the RS set for simplicity.

Trajectories and paths care compared using temporal align-
ment techniques for similarity measures. These techniques,
like longest common substring (LCSS) and dynamic time
warping (DTW), have been shown to perform best among
popular distance measurement methods for unequal length
trajectories [16], [17]. The LCSS distance is utilized due to
its robustness to noise and outliers since not all points must
be matched. Rather than a one-to-one mapping between all
points in trajectories to compare, a point with no good match
can be ignored. The LCSS distance [16] can be computed as

DLCSS(F
Ti
i , F

Tj

j ) = 1−
LCSS(FTi

i , F
Tj

j )

min(Ti, Tj)
(2)

where Ti is the length of trajectory Fi. The LCSS is
defined in 1 and represents the number of matching points
between two trajectories. F t = {f1, ..., ft} denotes the
trajectory centroid up to time t. The matching requires that
compared points are withing a small euclidean distance ε and
that the points are not separated by more than δ samples (to
ensure the lengths are comparable). The LCSS distance can
be efficiently computed using dynamic programming.

The trajectory comparison module picks up when the zone
module fails by comparing the trajectory with all the stored
paths of the intersection. The path with the smallest DLCSS

value is considered the best match and used to increment the
TM counters. Examples of the intersection paths can be seen
in Figs. 5 and 6. The paths are color-coded based on their
approach zone so all path starting in a particular zone have
the same color.

IV. EXPERIMENTAL EVALUATION

Experimental evaluation was performed in two steps. In
the first step, detailed evaluation of the cooperating compar-
ison modules was performed on two different intersections,
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TABLE I: Regular Sequence Set for Turning Movement Directions

WBL WBT WBR NBL NBT NBR EBL EBT EBR SBL SBT SBR

INT1 {1,5,3} {1,5,4} {2,5,3} {2,5,4} {4,5,3}
{1,4} {4,3}

INT 2 {1,5,2} {1,5,3} {1,5,4} {2,5,3} {2,5,4} {2,5,1} {3,5,4} {3,5,1} {3,5,2} {4,5,1} {4,5,2} {4,5,3}
{1,4} {2,1} {3,2} {4,3}

LCSS(Fi, Fj) =


0 Ti = 0|Tj = 0

1 + LCSS(FTi−1
i , F

Tj−1
j ) dE(fTi

, fTj
< ε)&|Ti − Tj | < δ

max(LCSS(FTi−1
i , F

Tj

j ), LCSS(FT
i , F

Tj−1
j )) otherwise

(1)

Fig. 5: Typical paths for first intersection (INT 1)

Fig. 6: Typical paths for second intersection (INT 2)

INT1 and INT2. Each intersection was setup by defining
zones and paths before examining the TM counts over a
two hour period. As is typical in transportation studies, the
counts are aggregated into 15 minute intervals to determine
the counting accuracy rate. The accuracy rate [9] is defined
as

ar =
|M − C|
M

, (3)

where M specifies the manual count and C the automatic
count.

A. Learning Paths

For simplicity, the paths were learned by recording the
first full trajectory in each of the TM directions. These full
trajectories were selected based on the zone comparison flag
and were retained in full frame resolution for later LCSS path
comparison. The paths for the experiments are shown in Figs.
5 and 6. The typical path starting from North, West, South,
and East zones have red, green, brown, and yellow colors
respectively. Notice the high degree of overlap between WE
and NE paths in INT1 which makes automatic counting
difficult with either zones or trajectories. Also, INT1 is only a
three-way intersection and does not have East-bound traffic.

B. Vehicle Tracking & Counting

The cooperative TM system was implemented in C++
using OpenCV 2.3 and operates in real-time on an Intel i7.
At first evaluation step, our system was evaluated for two
different intersections for eight intervals of 13500 frames
(15 minutes interval and 2 hour in total). Finally, our system
was run for longer time (12 hours of five days in total) with
15 minutes interval to show operational usage as well as
high temporal resolution. The GMM background subtraction
scheme used K = 5 mixtures.

TABLE II: Manual Counting \Automatic Counting by Zone
for INT 1 (4:00-6:00 p.m)

Typical Path WBT WBR NBL NBT SBR
4:00-4:15 p.m 103\74 0\0 1\0 10\1 21\20
4:15-4:30 p.m 102\89 1\0 1\0 12\1 21\19
4:30-4:45 p.m 111\79 1\1 0\0 12\0 21\21
4:45-5:00 p.m 129\110 4\3 1\1 14\2 23\19
5:00-5:15 p.m 135\84 1\1 1\6 14\2 18\18
5:15-5:30 p.m 147\74 2\3 2\6 20\7 25\23
5:30-5:45 p.m 142\88 2\1 4\4 23\4 23\20
5:45-6:00 p.m 135\107 4\3 2\0 9\0 19\20

Total 1004\70615\12 12\17 114\17 171\160
|Difference| 298 3 5 97 11

Accuracy rate 70% 80% 58% 15% 94%

Table II gives the accuracy of the zone comparison module
on INT1. This is the baseline for comparison. The westbound
through (WBT) (green) direction has the most traffic. The
errors in this direction are associated with occlusion hap-
pening with northbound vehicles. The northbound directions
(red) perform the worst by far because they appear furthest
away from the camera which results in poor tracking due to
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TABLE III: Manual counting\Automatic counting by Zone+
LCSS for INT 1 (4:00-6:00 p.m)

Typical Path WBT WBR NBL NBT SBR
4:00-4:15 p.m 103\95 0\0 1\0 10\9 21\22
4:15-4:30 p.m 102\103 1\0 1\0 12\12 21\20
4:30-4:45 p.m 111\101 1\0 0\0 12\10 21\23
4:45-5:00 p.m 129\120 4\5 1\1 14\13 23\21
5:00-5:15 p.m 135\115 1\1 1\6 14\14 18\19
5:15-5:30 p.m 147\116 2\3 2\6 20\14 25\28
5:30-5:45 p.m 142\119 2\1 4\4 23\18 23\23
5:45-6:00 p.m 135\126 4\3 2\0 9\8 19\21

Total 1004\89515\14 12\17 114\98 171\177
|Difference| 109 1 5 16 6

Accuracy rate 89% 93% 58% 86% 96%

instability of the blob appearance at north area. The results
using both zones and trajectories is presented in Table III.
24% of the counting is done by the trajectory comparison
module for INT1. Overall, the accuracy increased using the
LCSS trajectory measure from 63% to 84%. There were
significant improvements in the NBT and WBT directions
which indicate how trajectory information can resolve the
tracking issues.

The performance from INT2 is given in Table IV. Al-
though the intersection is actually busier than INT1, the
camera is in a better position leading to higher quality
results. The camera is placed closer to the intersection
resulting in higher resolution vehicles and less distortion and
overlap between paths. Like in INT1 there is a significant
improvement accuracy when using both the zones and LCSS
trajectory comparison. In this case, 21% of counting was by
trajectory comparison. In particular, SBL, SBT, and NBT
all had accuracy improvements over 20%. Since these were
the longest paths with the most traffic, they were prone to
occlusion which the trajectory comparison module was able
to handle. It is noted however, that the accuracy in some
of the other directions were decreased by using LCSS. The
reason is that a noisy broken trajectory might find wrong
match by LCSS. In the WBR, NBR, and SBR directions
there were false counts using the trajectories that marginally
affected these directions. Overall, the average accuracy rate
increased from 83% to 92% with the module cooperation
which highlights the effectiveness of the proposed system.

For the second evaluation step, the cooperative TM system
was compared over a longer time frame to demonstrate the
operational utility of this system. This type of continuous
operation provides high temporal resolution and detail of
behavioral effects. A third intersection was examined over
five working days from 8:00 to 20:00 in 15 minute intervals.
Figure 7 shows the third intersection and its typical paths
while Figs. 8-10 show the TM counts over the 48 intervals
in the 12 hour daily observation period.

As it is shown in figure 8 and it was also calculated,
the average number of turning lefts for all five days are in
the same typical range of 26 to 30. However, Wednesday
has more fluctuation with higher standard deviation. The
burst-line nature of left turning should be considered for
traffic signal timing. Wednesday also shows couple of peaks

Fig. 7: Typical paths for third intersection (INT 3)

Fig. 8: Turning left counts for INT3

at certain times (15-15:15, 12:15-12:30 and 13:15-13:30)
indicating busiest time of the day.

In figure 9, vehicle counts for going straight is shown
for each day. Tuesday through Thursday traffic follows a
fairly consistent pattern of utilization. Friday, in contrast,
has a higher counts all day. The right turn counts, shown in
Fig. 10, actually show higher utilization on Tuesday rather
than Friday as in the straight through. These subtle count
differences cannot be obtained through traditional TM data
collection since counts are only sporadically obtained and
only during peak travel hours. By continuously monitoring
TM counts, it is possible to optimize signal timing.

The three Figs. show some noise measurements (Monday
10:45-11, Tuesday 13:45-14:00, 18:45-19:00, Wednesday
18:45-19:00, Friday 17:45-18:00) where there is a dramatic
drop to zero counts. This is a result of the data collection
process when the network stream drops a frame and corrupts
the time interval. The current implementation stops counting
in any interval with a dropped frame.

V. CONCLUDING REMARKS

This work presented a vehicle tracking system that is
able to obtain accurate turning movement counts at general
intersections that has been tested over long time intervals.
The system is able to count vehicles for different paths by
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TABLE IV: Manual counting\Automatic counting by Zone and Zone + LCSS for INT 2 (4:00-6:00 p.m)

Typical Path WBLWBT WBR NBL NBT NBR EBL EBT EBR SBL SBT SBR
Manual Counting 20 68 164 53 404 36 92 101 73 129 357 62

Zone 24 78 160 54 518 38 108 145 77 218 545 71
Zone + LCSS 24 73 172 58 513 43 99 126 77 218 503 82

Accuracy rate (Zone) 80% 87% 97% 98% 78% 95% 85% 70% 95% 59% 65% 87%
Accuracy rate (Zone+LCSS) 80% 94% 92% 93% 99% 87% 92% 87% 100% 100% 92% 85%

Fig. 9: Going straight counts for INT3

Fig. 10: Turning right counts for INT3

cooperation between two modules called zone comparison
and trajectory comparison. The trajectory comparison mod-
ule uses the LCSS trajectory distance method to complement
difficult situations that arise by defining critical zones only.
The proposed system improves the counting accuracy by
15% without implementing specific occlusion handling.
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