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Abstract

In a world that is increasingly reliant on automobiles, efficient management of
the transportation network is a key functionality of intelligent transportation systems
(ITS). A wide range of these ITS applications rely on the extraction of current data as
well as historical information in order to perform appropriately. This work presents a
novel computer vision based approach for traffic management. The VECTOR system
processes live video traffic streams to track individual vehicles, classify vehicle type,
and accumulate essential highway management measurements. This system provides
a front end collection tool that can be used for a wide variety of other transportation
tasks including congestion analysis, speed compliance and flow analysis, as well as
trajectory pattern analysis. The system provides real-time situational awareness to
highway monitoring and presents a trajectory analysis framework that can be extended
into vehicle based monitoring.

1 Introduction

The last 100 years has brought great advancements and developments in personal trans-

portation transforming the horse drawn world into one dominated by automobiles. The

emergence of the automobile has opened up the world, providing almost unlimited access

and mobility. In the United States alone, a staggering 240 million vehicles travel over 12

million miles annually on a network consisting of 4 million miles of road whose maintenance

costs $40 million [1]. Such a large infrastructure has immediate social, economic, energy,
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and environmental impact. Motor vehicle taxes generate $30 billion annually. Americans

use 175 billion gallons of fuel for highway travel releasing a number of emissions into the

air. Between 1995 and 2001 there was 10% increase in average commute time. People were

traveling the same distance but witnessed a speed drop and increased delay while stuck in

congested traffic [2]. Perhaps most alarming were the 2.5 million injury accidents and 41

thousand motor vehicle related fatalaties in 2008 [3]. These numbers represent just a small

portion of worldwide dependence on automobiles and emerging countries such as India and

China will dramatically effect the future of transportation.

In order to manage such a vast transportation network, it is essential to invest in intelli-

gent transportation systems (ITS) technologies. ITS solutions provide the means to extract

and manage information necessary for continued advancement. Without their use it would

be impossible to continually monitor our roadways, as no human could process such large

amounts of data. The key requirements for successful ITS systems are the ability to extract

and process data in real-time, provide robustness to a wide range of operating conditions,

and technologies that can adapt to changes in the environment which is essential for long

term deployment.

In this work we present a novel video camera based highway monitoring tool, the visual

VEhicle Classifier and Traffic flOw analyzeR (VECTOR) [4]. VECTOR processes live video

streams to accurately track each individual vehicle, classify vehicle type, and collects essen-

tial highway traffic measurements. Using these measurements, highway flow is analyzed to

characterize link efficiency as well as to build behavior models for speed compliance. The

vehicle trajectories are collected and used to automatically build a model of the typical scene

behaviors. This model allows a succinct description of live activity, the detection of abnor-

malities, and prediction of future behavior. The trajectory analysis framework developed for

infrastructure based monitoring is extended for moving platforms. Using cameras and other

in vehicle sensors, the local micro traffic behavior can be analyzed from cars on the road.
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(a) Sedan (b) Pickup (c) SUV (d) Van

(e) Merged (f) Bike (g) Truck

(h) Semi

Figure 1: Sample images from each vehicle class.

2 VECTOR Measurements

The VECTOR module was designed for real-time highway traffic analysis. In addition to

loop detector type measurements essential for highway management, VECTOR determines

the types of vehicles on the road over time. Accumulated traffic statistics are used to build a

traffic model useful for online traffic flow analysis, such as detection of dangerous behavior.

2.1 Target Tracking

Vehicles are detected using an adaptive background subtraction scheme which allows the

background to be updated in real-time. The background, corresponding to the highway

without cars, is modeled and is modified to reflect the current scene configuration. This

adaption is important because the system must be able to work through a wide range of

environmental conditions such as changing illumination. The background subtraction step

highlights vehicles in the image which are then tracked for the time spent in the camera

field of view. The motion of each vehicle is modeled with a Kalman filter which enables

vehicle matching across video frames. The trajectories obtained through visual tracking

are important to many further analyses as they provide compact records of motion and

characterize behavior of each vehicle on the road.
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Figure 2: (a) Vehicle correctly classified as SUV after initially estimated as VAN and
TRUCK. (b) Classification accuracy is improved by leveraging evidence accumulated by
tracking. (c) Accuracy can be improved by focusing on highly confident examples (those
with large amounts of evidence).

2.2 Vehicle Classification

In addition to recording trajectories, a key functionality of the VECTOR system is the

identification of vehicle type. Using the 2001 National Household Travel Survey conducted

by the U.S. Department of Transportation [2], the 8 different classes of vehicles shown in

Fig. 1 are considered {Sedan, Pickup, SUV, Van, Semi, Truck, Bike, Merged}. Knowledge of

vehicle type is essential for a wide range of highway management functions such as estimating

emissions [5] or infrastructure load assessment [6]. This detailed real-time fleet composition

is currently a missing component is most emission studies.

While tracking a vehicle, a number of measurements are taken to describe its shape and

appearance which provide a unique identifier. This measurement vector is compared with

entries in a database and the best fit is determined to be the specific vehicle type. The

classification occurs for each vehicle at every frame it is visible by the camera. Because

a camera is an area sensor, it provides a number of different views of the same vehicle.

This information redundancy is exploited to improve the final vehicle classification. Rather

than relying on a single vehicle signature, the signatures acquired during tracking are used

together to refine the classification result and overcome noisy measurements. Figs. 2(a) and
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2(b) shows how the vehicle type classification improves as more information is used during

tracking. A vehicle can be initially misclassified but as more evidence is accumulated the

correct type is indicated. Decisions made based on just the first image of a vehicle can be

quite poor but by the end of a track the type is known with high confidence. Full details of

the track based classification scheme can be found in [7, 8].

2.3 Traffic Statistics

Accurate highway planning and management relies on a number of performance measures

and use real-time as well as historical data. Currently, this information obtained through the

use of inductive loop sensors which provide two basic measurements, flow and occupancy.

Flow is the number of vehicles and occupancy is the amount of time a loop is active in a given

time interval. While effective and ubiquitous, they require digging up of the road making

them prohibitive to maintain. In CA, among the 26000 loop sensors, approximately 25% do

not supply usable data. Video cameras provide an alternative solution for traffic statistic

accumulation that can be unobtrusively mounted along the roadside.

The VECTOR system delivers flow (#vehicles
time

), density (#vehicles
distance

), and speed (MPH) es-

timates in 30 second intervals, averaged over a 5 minute window. The speed is measured

for each and every vehicle, which is difficult to do with loop detectors. The quality of VEC-

TOR’s parameter extraction is presented in Fig. 3. Figs. 3(a) and 3(b) show system per-

formance compared with manually counted vehicles and Figs. 3(c) and 3(d) provide longer

time scale comparison with loop detector data using the freeway performance measurement

system (PeMS) maintained by UC Berkeley [9] with both displaying high agreement. This

shows that camera based sensors can integrate into the current loop based highway system

seamlessly.

Since VECTOR does vehicle type classification, it is possible to extract more rich traffic
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Figure 3: Comparison of VECTOR traffic parameter extraction with true flow in (a) lane 1
and (b) lane 4. PeMS provides a system for longer time scale evaluation of (c) flow and (d)
speed. Comparison between PeMS data and the VECTOR module shows strong agreement.
(e) Camera and PeMS loop detector sensor configuration on opposite sides of the Genesee
Ave. ramp.

measurements. The flow and speed are compiled for each type of vehicle and show in Fig. 4.

These parameters are essential for understanding the differing effects of commercial or private

vehicles on highway control and for the study of environmental impact from emissions.

3 Traffic Flow Analysis

Using the measurements calculated by the VECTOR system it is possible to design specific

traffic flow analysis modules. These modules could be designed for traffic management

personnel or another end user. Examples analysis blocks are for calculating the link usage

efficiency or to measure speed compliance.
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Figure 4: Traffic statistics (a) flow and (b) speed separated by vehicle type.
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Figure 5: Highway lane efficiency. (a) Southbound efficiency is low during the evening
commute because of congestion. (b) Northbound efficiency drop in fast lane not because of
congestion but because of under utilization.

3.1 Highway Efficiency

Chen et al. used flow and speed to show congestion is not caused by demand exceeding capac-

ity but because of inefficient operation of highways during periods of peak demand [10]. Fig.

5 shows lane efficiency of the north and south bound directions of the highway. Congestion

is clearly evident during the evening commute, where the efficiency drops significantly (Fig.

5(a)). It is interesting to note that while the efficiency of the south bound direction drops

because of congestion the north bound highway does not suffer from congestion but rather

under utilization (low flow).
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Figure 6: Speed profiling based on daily models {speeding, normal, slow, stopped} = {blue,
green, yellow, red}. (a) Speed characteristics for different days of the week. (b) Normal free
flowing traffic. (c) Commuter congestion causes differing characteristics in either highway
direction. The normal speed at this hour southbound is significantly slower than northbound.

3.2 Speed Compliance

The efficiency module above indicates spatial and temporal traffic variations. These daily

variations can be tracked and modeled using historical measurements. Fig. 6(a) shows the

speed fluctuations over the course of a week. There is a significant slowdown during the

Friday evening commute not seen on other days.

VECTOR uses these daily speed models to indicate the motion state of vehicle during

online tracking by the color a bounding box {speeding, normal, slow, stopped} = {blue,

green, yellow, red}. Sample output frames are shown in Fig. 6. Notice the northbound

lanes in Fig. 6(c) are moving freely at high speed while the southbound lanes have much

slower normal speeds because of congestion (30 mph is considered speeding). This speed

compliance tool can be used as a basic dangerous situation indicator. Vehicles driving well

over the normal limit might lead to accidents (fast cars in congestion). Researchers in

Japan have even used speed information to detect incidents, such as stalled vehicles, from

congestion [11].
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(a) (b) (c)

Figure 7: Typical trajectory patterns. (a) Profile view of highway traffic on I5 with the lanes
clearly demarcated. (b) 3/4 view of I5 obtained by adjusting the PTZ camera parameters.
(c) Example of typical intersection patterns corresponding to the acceptable intersection
maneuvers.

4 Trajectory Pattern Analysis

When monitoring traffic, a good indication of behavior is motion. Previously we mentioned

how the VECTOR system used estimated speed to determine if a vehicle was traveling

normally. Motion also indicates when a lane change occurs or if someone is breaking to

avoid a collision. Motion is captured by trajectories which indicate the spatio-temporal

characteristics of objects and encode behavior. Careful study of these trajectories allows

activity inferencing [12].

4.1 Learning Typical Patterns

A key observation for trajectory analysis is that typical actions are repetitive while the

unusual do not occur often. This indicates that through sufficient observation one is likely

to observe and can learn all the prototypical behaviors for a given scene. In order to learn

typical patterns, a training database of trajectories is accumulated. The training database

is then condensed into a small set of typical behaviors through clustering. Each cluster

corresponds to similar actions. Unfortunately, the number of typical behaviors for a scene is

not usually known a priori and must be estimated. We first cluster trajectories into a large
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(a) (b) (c) (d)

Figure 8: Abnormal tracks not adhering to prototypical paths
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Figure 9: Left turn prediction behaves as expected. As more data points are collected the
prediction better matches the true lane.

number of small groups which we suspect to be greater than the true number of activities.

The small clusters are then agglomeratively merged into larger more typical clusters. In

Fig. 7, the typical patterns are shown for a number of different transportation scenes. The

prototype patterns correspond to the lanes of the highway or to the allowable maneuvers at

an intersection.

4.2 Behavior Analysis

A vocabulary to describe behavior is established by learning the typical scene patterns.

During live video analysis, object activity can reference this learned set. For every frame a

vehicle is observed, its current behavior is determined by its best match in the reference set.

Similar to the VECTOR classification scheme, as more trajectory data is accumulated it is

possible to improve the activity estimate. While interesting, it might be more important

to detect not the typical behaviors but the abnormal. Anomalous trajectories arise when
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(a) (b)

Figure 10: (a) Vehicle sensor measurements from CAN. (b) GPS based mapping provides
competely network coverage.

something out of the ordinary occurs. These abnormalities are detected when none of the

reference set adequately explain the observed motion. A collection of abnormal trajectories

are presented in Fig. 8. These are of utmost importance because they can indicate unsafe

behavior or perhaps a distressed vehicle.

Another useful analysis capable with trajectory analysis is intent prediction. Instead of

determining what is occurring now it is possible to guess what will happen in the future.

This type of prediction is much more powerful than simple one step prediction associated

with Kalman or particle filters because the prediction looks further into the future and is

conditioned by actual observed behaviors. Fig. 9 shows the evolution of a left turn. The

probability of a behavior is shown in the white box over the associated pattern. Early into the

left turn maneuver it is unclear which lane the vehicle will turn into but as more information

is obtained the estimate improves. This type of anlaysis is of great importance for intersection

safety [13, 14]. Using predicted paths, the probability and time to collision can be assessed.

One can envision a future where an intelligent intersection can warn approaching vehicles of

danger.
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Figure 11: LISAQ collects video from 8 different cameras which capture the interior and
surround of the vehicle.

5 In-Vehicle Trajectory Analysis

Another key tool for ITS highway monitoring are the vehicles on the road themselves. Every-

day cars travel freely along the country’s road networks providing greater coverage than any

loop or camera sensor could hope to achieve. The situations and interactions encountered

by every driver on a daily basis can be leveraged to provide a more complete view of traffic.

Auto companies are equipping vehicles with advanced sensors which can provide a wealth

of information about both the current vehicle state as well as local driving conditions. By

utilizing these sophisticated sensing devices, new insights can be gleaned and more effective

control and safety strategies can be implemented.

The Laboratory for Intelligent and Safe Automobiles (LISA) at UCSD provides a unique

12



Brendan Morris and Mohan Trivedi VECTOR: Trajectory Analysis for Advanced Highway Monitoring

Figure 12: The LISA testbeds allow the collection of CAN measurements from the vehicle
sensors as well as video to monitor both the surround and interior to provide a holistic driving
view. The surround views show each obstacle vehicle in color. One second of trajectory
history is shown by the colored dots in the surround zoom view.

testbed to explore approaches to making more safe and “intelligent” vehicles. Each is a

mobile computing platform that is able to collect and analyze, in real-time, measurements

from the on-board vehicle sensors via CAN (Fig. 10(a)), GPS (Fig. 10(b)), and a host of

sensors, e.g. video cameras (Fig. 11) and radar, designed to capture the interior and exterior

of the car.

Fig. 12 provides a visualization of data collected from LISA. Two cameras provide a view

of the driver and out the front windshield. To the right a selection of CAN measurements
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are displayed which indicate the current state of the vehicle. The two upper panes show

the vehicle surround and denotes other vehicles in color. Each obstacle is tracked (see the

pink trajectory in the surround zoom pane) and the resulting trajectory is used to assess

the driving situation. Similar to the infrastructure mounted cameras, the trajectories from

this moving platform give an indication of behavior. Prototypical driving behaviors can be

learned to explain longitudinal and lateral motion which includes acts such as acceleration,

braking, lane change, and turns. The future behavior of the surround obstacles as well as

the ego-vehicle, since its motion provides another track, can be predicted with the prototype

motion models. This prediction allows assessment of the safety of the traffic configuration.

Further, the criticality of ego-maneuvers can be evaluated and a driver can be warned when

a desired move would result in unsafe outcome.

6 Future Directions

ITS technologies ample opportunities for exciting new research. Continual improvement of

systems to ensure real-time, robust, and adaptive solutions is necessary. This incorporates

more general computer vision issues such as robust tracking through harsh elements, shadows,

and heavy occlusion. Safety can be further improved by defining safety performance measures

to asses the the effectiveness of the driver assistance systems that are now being developed

[15]. Infrastructure based safety systems will need to convey information to road drivers and

in a way that is informative but not distracting necessitating work in communications and

human factors. But the future of ITS does not rely solely on computer vision. True ITS

systems will require elegant fusion of a wide variety of data sources (integration of VECTOR,

loop sensors, and vehicle based sensors). The future of ITS will be shaped by urban and

highway planners, scientist, and policy makers all working together to improve travel.
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7 Concluding Remarks

This work presented the visual VEhicle Classifier and Traffic flOw analyzeR (VECTOR) sys-

tem. An ITS technology aimed a highway monitoring, VECTOR tracked vehicles, classified

vehicle type, and accumulated traffic statistics. Using this information, the system was able

to assess high efficiency, determine speed compliance, and understand and predict behavior.

This system demonstrated the power of computer vision technologies for ITS which can be

reconfigured for a wide variety of analyses. The infrastructure based solution was extended

for monitoring within a advanced sensor equipped vehicle. The future of ITS depends on the

integration of these types of systems as the front end data collection tools for higher level

understanding of transportation issues.
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