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Abstract—The ability to monitor the state of a given roadway
in order to better manage traffic congestion has become increas-
ingly important. Sophisticated traffic management systems able to
process both the static and mobile sensor data and provide traffic
information for the roadway network are under development. In
addition to typical traffic data such as flow, density, and aver-
age traffic speed, there is now strong interest in environmental
factors such as greenhouse gases, pollutant emissions, and fuel
consumption. It is now possible to combine high-resolution real-
time traffic data with instantaneous emission models to estimate
these environmental measures in real time. In this paper, a system
that estimates average traffic fuel economy, CO,, CO, HC, and
NO,. emissions using a computer-vision-based methodology in
combination with vehicle-specific power-based energy and emis-
sion models is presented. The CalSentry system provides not only
typical traffic measures but also gives individual vehicle trajecto-
ries (instantaneous dynamics) and recognizes vehicle categories,
which are used in the emission models to predict environmental
parameters. This estimation process provides far more dynamic
and accurate environmental information compared with static
emission inventory estimation models.

Index Terms—Intelligent transportation systems (ITS),
real-time energy/emissions estimation, traffic measurement and
management, vehicle specific power energy and modal emissions,
visual tracking and classification.

I. INTRODUCTION

ITH the increase in roadway congestion, the ability

to monitor the state of the roadway network, by a
variety of means, has become critical. Over the last decade,
there has been a tremendous amount of research conducted
on intelligent transportation systems (ITSs) for advanced traf-
fic monitoring and management. Traffic management centers
(TMCs) located around the world are becoming increasingly
sophisticated. They bring in data from large networks of sensors
for traffic analysis purposes. Efficient operation of these centers
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requires both an up-to-date view of current conditions for
speedy response, and historical data for modeling, planning,
and prediction.

A prime example of such a system is California’s Per-
formance Measurement System (PeMS) [1], which gathers
measurements from 30000 inductive loops embedded in the
highway and distributed across the state in addition to police
incident reports and lane closure information. PeMS has made
the fundamental flow, occupancy, and speed data, along with
basic traffic calculations, accessible to the research community,
thus inspiring novel traffic management solutions.

While capacity and congestion have historically been the
major motivating factors of transportation management, new
performance metrics have recently garnered attention. In ad-
dition to standard traffic metrics, there is a strong interest in
traffic-related emissions related to:

1) pollutants (e.g., carbon monoxide (CO), hydrocarbons
(HQ), nitrides of oxygen (NOy), and particulate matter);

2) greenhouse gases [e.g., carbon dioxide (CO2)];

3) energy (fuel consumption).

Estimating the emissions inventory for vehicles traveling
on the roadway network is an active field due to emission
requirements from government institutions such as the U.S.
Environmental Protection Agency (EPA) and the California
Air Resources Board (CARB). Both the EPA and CARB have
sophisticated emission models [2], [3] that can be used to
determine emissions for specific scenarios, and most roadway
planning must utilize these models to determine the impacts of
future activity. The transportation community is now beginning
to see the value of combining both real-time transportation
data and emissions modeling to predict instantaneous emis-
sions or energy usage on a road network on a link-by-link
basis. Unfortunately, there is no PeMS-like system for accurate
roadway emissions measurements. Attempts have been made to
utilize link-based traffic volumes and average speeds along with
speed-emissions curves for estimation [4], but these approaches
lack sensitivity. They do not account for vehicle profiles and
the differences between various vehicle types and instantaneous
activity, which drastically affect emissions.

To provide real-time link-based emissions (and fuel econ-
omy), this paper has developed the CalSentry system that com-
bines the vehicle classifier and traffic flow analyzer (VECTOR)
[5] system, which is a computer vision-based highway measure-
ment system, with vehicle-specific power-based (VSP) [6] en-
ergy/emission profiles derived from the comprehensive modal
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emission model (CMEM) [7] and the motor vehicle emission
simulator (MOVES) [2]. This system provides subtle vehicle
dynamics (instantaneous speed and acceleration) through visual
tracking along with categorization of the type of vehicles on
the road to accurately estimate vehicle-specific emissions. The
system could be deployed within a larger sensor network to
provide a streaming data source for traffic management systems
such as PeMS, thus providing useful real-time information for
policy makers, planners, and health officials, and facilitating
further transportation-related emissions research.

II. RELATED STUDIES

The world’s rapidly growing and expanding population has
led to traffic congestion even on well-planned road networks.
This congestion results in a loss of time and productivity and
contributes a high economical cost. To tackle the congestion
problem without continual road construction projects, traffic
management and control approaches have been adopted to
better utilize the existing roadway infrastructure. However, the
development of effective management and control strategies
requires significant data collection. Historical data are needed
to learn and develop models, whereas real-time measurements
can provide up-to-date indicators of performance for prompt
response. In addition, these data are needed over large coverage
areas with varied conditions. Effective monitoring systems
must be therefore scalable, provide distributed and cooperative
sensing, be robust to a wide range of environmental conditions,
and have efficient transmission and storage.

The dominant sensor for traffic management has been the
inductive loop sensor, which is able to detect the presence of
a vehicle based on an induced magnetic field. This simple spot
detector provides the count of vehicles that have passed over it
(flow) and the amount of activation (occupancy) in a time pe-
riod. By collecting the loop readings from many sensors, traffic
researchers have built complex models for analysis. PeMS [1]
which was developed at the University of California, Berkeley
and now under the control of the California Department of
Transportation provides raw loop readings and fundamental
traffic performance measures.

However, inductive loops are costly to install and maintain
(only 62% of California’s PeMS loop sensors are in working
order), making the search for alternative sensing solutions [§]
or augmentation schemes [9] appealing. Video cameras have
emerged as a popular ITS device within TMCs for human
operator monitoring and verification. Cameras provide com-
plementary analysis that is difficult to obtain using traditional
sensors. They provide wide spatial coverage or field-of-view
(FOV) which captures higher order dynamics in vehicles and
traffic, and rich information content for more complex analysis
(e.g., classification and trajectory analysis [10]-[12]).

A. Visual Traffic Monitoring

Highway monitoring is one of the oldest applications for
vision researchers. The inherent structure of roads coupled with
a vehicle’s rigid body constrains the vision processes. Early
vision-based traffic monitoring researchers looked to mimic
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the popular inductive loop sensor counts by manually defining
virtual loops in the camera FOV [13]. While both easy to
manage and effective, the virtual loops did not take advantage
of the spatial coverage afforded by the camera, reducing the
wide FOV into several small point sensors. Subsequently, most
researchers began to focus on moving object detection and
tracking [14]. In this paradigm, a count is generated for every
tracked vehicle [5], [15].

However, video processing is not without challenges. Cam-
era placement and view are critical for successful deployment.
Imaging provides roadway coverage over long distances but
also causes perspective distortion, which greatly affects the
apparent size of vehicles and leads to occlusion. Significant
effort has gone into developing detection methods that can
resolve occlusion such as feature grouping in the image plane
[15] or using multiple homography transformations in 3-D
space [16].

Cameras also have difficulties dealing with changing en-
vironmental conditions such as illumination changes. Re-
searchers have attempted to distinguish cast shadows on the
roadway from vehicles using shadow detection and suppression
techniques [17]. In addition to shadows caused by lighting, it is
quite difficult to operate vision systems at night without the use
of costly low-light sensitive or infrared cameras, reducing the
effective operating time.

B. Vehicle Classification

The switch to video-based traffic monitoring is particularly
useful for vehicle classification because of the appearance
information contained in an image. Loop-like sensors only
generate a 1-D signature, which makes it difficult to resolve
differences between vehicles (large and fast moving versus
small and slow). Generally, these systems count the number of
axles to distinguish between large and small vehicles.

Buch et al. [18] devotes two large sections to top-down
(object-based) and bottom-up (part-based) visual classifica-
tion techniques for urban traffic. It is noted that, classifica-
tion often degenerates into a detection problem because the
techniques are designed for matching. Even [16], which is a
recent vehicle classification paper, only makes a distinction
between two different classes of vehicles based on stable
features.

An earlier work by Gupte et al. [19] classified vehicles by
their length. However, length measurement precision was found
to be low and not flexible to camera views. More detailed
classification has been tackled using shape and appearance
techniques [5], using a linearity feature [20] or explicit vehicle
models. Edge matching techniques have been designed for use
with 3-D wire-frame vehicle models [21]. Although the four
wire models were quite simple and had low resolution, they
only operated at 5 Hz. More generic and adaptive 3-D models
have been explored to provide a deformable vehicle model with
higher resolution [22]. Results were shown on a difficult 5-class
problem where a distinction was made between two- and four-
door sedans.
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CalSentry block diagram. (Purple) VECTOR subsystem performs visual tracking, classification, and traffic statistic measurement. Emission modeling

module (green) and visualization module (orange) are all connected to static calibration and dynamic measurement databases (blue) to store highway performance

measurements.

Despite these efforts, it is still difficult to leverage high-
resolution imaging while maintaining the computational effi-
ciency required for real-time monitoring.

C. Emissions/Energy

Environmentalists and health officials have long been con-
cerned with the effects of air pollution on air quality, but only
recently has there been a major shift in focus to the transporta-
tion sector. Traditionally, monitors that measure pollutants in
the air in parts per million or per billion are used to evaluate air
quality. Unfortunately, the number of monitoring sites is limited
and, therefore, cannot accurately depict the spatial distribution
of pollutants. In addition, the sparse data does not necessarily
express traffic emissions specifically since measurements are
not close to the source. In fact, mobile measurement sys-
tems have shown pollutants found near highways significantly
exceed the maximum values reported by fixed measurement
monitors [23].

To isolate the effects of transportation emissions, a wide
range of modeling techniques has been adopted [4]. The sim-
plest models are easy to calculate and rely on average speed
but do not account for real-world driving characteristics [24].
More complex modal models operate at a higher time resolution
(in seconds) and account for more detailed vehicle and traffic
characteristics, such as specific engine operation and vehicle
movements. The modal models have recently gained traction
because supporting data can more easily be obtained via Global
Positioning System (GPS) [25], and they can be integrated into
microscopic traffic simulation models [26]. While promising,
these techniques are difficult to scale to large areas. Commu-
nication networks must be established, and there must be a
high penetration rate for GPS-based emission calculations. Mi-
croscopic traffic and emissions simulation is computationally
expensive for large networks because trajectories and emissions
must be calculated for each vehicle at each simulation time step
over the entire network and are affected by errors in the traffic
models themselves.

Currently, there is no tool available to calculate
transportation-related emissions in real time for a large
number of vehicles. In addition, there is no way to present this
information to stakeholders to manage or plan future decisions.

III. CALSENTRY HIGHWAY EMISSION
MANAGEMENT SYSTEM

This paper presents CalSentry, the first real-time integrated
highway transportation measurement and management system
for emission/energy estimation. This vision-based system com-
bines four major components, as shown in Fig. 1:

1) visual traffic measurement;

2) dynamics-based emission estimation;

3) real-time visualization;

4) database for record keeping.

The elements shown in purple in Fig. 1, comprise the parts
of the VECTOR highway monitoring module [5], which is a
visual tracking and analysis system suitable for distributed traf-
fic understanding [27]. The emission modeling and estimation
block, shown in green in Fig. 1, utilizes VECTOR analysis to
estimate the amounts of pollutants produced by vehicles on the
roadway using real-time emission modeling [2], [7]. Adhering
to a framework designed for thematic contextualization [28],
measurements and model estimations are stored and utilized for
appropriate visualization of system output (the orange block in
Fig. 1). As a testament to its robustness, the CalSentry system
has been in continuous daily operation at a single site since
early 2011, collecting highway data during the daylight hours
when vehicles are visible.

At the host site, a traffic operator can view live highway
video feeds, i.e., both in raw and in processed form. Fig. 2(a)
shows the output of the VECTOR system. The highway video is
processed in real time to display object detection and tracking
results. Tracked vehicles have a color-coded bounding box to
indicate the current emission score (based on dynamics and
vehicle type) with red indicating a higher score. In addition,
on the left side of Fig. 2(b), in red and white, are moving
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Fig. 2. CalSentry visualization. (a) VECTOR system for vehicle tracking and classification. (b) Real-time plots of vehicle counts and emissions. (c) Google map
with highway color coded based on emission measurement and updated in 30-s intervals.

time-series plots of highway flow. The plots are updated every
video frame to give the instantaneous count of vehicles travel-
ing either north or south while providing a short 30-s history.
Using the VSP approach [6] (described in Section V-B), the
roadway emissions are estimated based on tracking information
and vehicle type (determined by visual processing). Similar
to the moving flow plots, the instantaneous VSP value with
30-s history is displayed in yellow and blue. The time-series
plots are intended to show the evolution of conditions on the
road. On the right of Fig. 2(b) are two bins representing the
total accumulated emissions in the north and south directions
in a sliding 30-s window. The bins are color coded as yellow,
orange, and red, to indicate low, medium, and high amounts
respectively, of greenhouse emissions.

The diagnostics plots of Fig. 2(b) provide immediate up-to-
date measurements but are quite variable due to traffic conges-
tion conditions. The emission score, which includes the four
greenhouse gases and pollutants (COs, CO, HC, NOy), is ac-
cumulated and aggregated over 30-s increments for more stable
timescales. By adopting the standard loop detector aggregation
scheme, emission statistics can be directly correlated and used
in the same way as the traditional highway measures of flow,
occupancy, and speed. In fact, they could be combined not only
with VECTOR highway measurements but also any loop data,
such as those warehoused by PeMS.

The final output component in the CalSentry system is a
remote user interface. A public website, utilizing the Google
Maps API, was constructed to provide interested parties ac-
cess to the emission measurements. Fig. 2(c) shows the map
with a color-coded view of a highway link. Using the same
color scheme as the bins above, i.e., {yellow, orange, red} =
{low, medium, high}, the highway is colored to indicate the
30-s aggregate emission value for the link. In this snapshot,
the northbound direction is colored yellow, indicating a low
emission level, whereas the southbound direction is orange,
indicating a medium emission level. The map is similar to the

more familiar navigation maps that have been color coded for
speed. Similar emission coverage could be provided with more
CalSentry nodes to give a better sense of the current emission
conditions in a city or a region.

Although not visualized, an important part of the CalSentry
system is the database for historical record keeping. With
increased coverage and data, the database will be valuable for
displaying trends (e.g., the evolution of emission “hot spots” in
a city over the course of a day) and as input to support larger
scale emission modeling. This data will help transportation en-
gineers and policy makers understand how commutes affect air
quality and determine how to best manage or build future roads.

IV. VEHICLE CLASSIFIER AND TRAFFIC FLOW ANALYZER
TRAFFIC MONITORING

The following describes highway traffic monitoring with
VECTOR [5]. The camera-based system is able to detect, track,
and identify the type vehicles on the roadway. In addition,
it produces traffic measurements, similar to traditional loop
detectors, in real time.

A. Vehicle Detection and Tracking

Unlike a loop detector that is a spot sensor, cameras observe
a vehicle over a period of time while it travels through the
camera’s FOV. Each video frame provides a new view that is
used to describe the appearance of a vehicle and its dynamics.

The VECTOR systems utilizes a single camera to monitor
both directions of a busy four-lane highway. Vehicles are
detected as moving regions using background subtraction
and tracked using a global nearest neighbor optimization that
accounts for both the dynamics and appearance. The trajectory
of vehicle 7
with  f; = [z,y,u, 0] (1)

F,={f1,..- ft,-.-, [T}
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Fig. 3.

is the sequence of positions and velocities that describes the
vehicle dynamics. The morphological appearance vector

M; = [no, - ,ms]" = )
{area, breadth, compactness, elongation, perimeter, convex
hull perimeter, length, long and short axes of fitted ellipse,
roughness, centroid, the four first and second image moments }
encodes the shape appearance of the particular vehicle.

B. Vehicle Classification

Using the appearance vector M;, VECTOR classifies each
vehicle into one of the eight different types: sedan, pickup, sport
utility vehicle (SUV), van, semi, truck, bike, and merged, as
shown in Fig. 3. At a particular instant, M is transformed using
Fisher linear discriminant analysis (LDA) and compared with a
vehicle database using a weighted K nearest neighbor (WkNN)
technique to produce class weights. The final vehicle label L;
of a track is determined after iterative refinement with each new
video frame.

1) Feature Transformation: Appearance features were pro-
jected using LDA [29] to better separate vehicle classes in a
lower dimensional space.

The size N training database D = { Dy, ..., D¢} is divided
into smaller N, sized sets for each of the C' classes. The mean of
the full data set is = (1/N) Zf\]:l M;, and the class-specific
means are yi. = (1/N,) > %, M;. The Fisher maximization
criteria leads to the generalized eigenproblem Spw = ASyw,
where Spg, is the between class scatter matrix and Sy, is the
within class scatter matrix as follows:

C
Sp = Z Ne(pre — ) (pre — N)T (3)
c=1

C
Sw=>_ > (Mi—pe)(M; — pe)". )

c=1 M;eD,

An LDA projection matrix is obtained by retaining the top
p = 5 eigenvectors that is used to obtain a compact representa-
tion for vehicle appearance, i.e.,

m; = P]\4J\4Z = [wl, - ,wp]Mi. (5)

s Wiy e w s

2) Detection Classification: After projection, a vehicle is
compared with a database using a modified NN classifier.
The wkNN rule has more robustness to noise and outliers by
utilizing a soft class assignment, i.e.,

K

1
2 T sm@l ©

z;€Dc
i=1

we(t) =

Sample images from each vehicle class. (a) Sedan. (b) Pickup. (¢c) SUV. (d) Van. (e) Semi. (f) Truck. (g) Bike. (h) Merged.

The weight w,.(t) indicates the likelihood of m(t) belonging
to class ¢ based on the similarity to the /' = 5 closest training
examples.

3) Track-Based Classification Refinement: A track-based
refinement scheme is adopted to exploit information redun-
dancy from multiple frames for improved classification. Given
T images of a vehicle during tracking, the track class label is
found by maximum likelihood estimation as

T
L; = argmax Z p(m(t)|c)

c
t=1

(7

|
o
=
o
-E
"
7
=
]
[
g
o
=

Using (7), the label is refined with each new frame by calcu-
lating the detection weight (6) and iteratively updating the log
of the class distribution to leverage any additional appearance
evidence.

C. Traffic Statistics

Using trajectory information, the time series of fundamental
highway usage parameters, analogous to those obtained from
conventional loop detectors, is collected in real time. The
VECTOR system delivers average speed (in miles per hour),
density (#tvehicles/distance), and flow (#vehicles/time) in
30-s intervals, as shown in Fig. 4.

1) Directional Measurements: The highway speed [see
Fig. 4(a)] is directly measured as the average velocity of all
vehicles seen in the 30-s interval. The roadway is calibrated
based on ground plane homography to convert pixels/second
image tracking into miles per hour. The density indicates how
crowded a roadway is and is computed by counting the number
of vehicles in the camera view normalized by the roadway
length. A loop detector cannot directly measure density because
it is a spot sensor; instead, density is inferred based on occu-
pancy and flow. Traffic flow is a count of the number of passing
vehicles in a 30-s time interval. VECTOR produces the flow
statistic by counting vehicle tracks as they exit the camera FOV
in a manner similar to loop detectors.

2) Lane-Level Measurements: In Fig. 4(a), the traffic in
northbound and southbound directions are compared during
daylight hours. In this section of road, the southbound traffic
is affected during the evening commute hours of 14:00-16:00.
The causes can be further investigated by focusing on the lane-
level traffic measurements shown in Fig. 4(b). During tracking,
the lane number is determined based on position in the image.
The density of vehicles in the fast lane (lane 1) dramatically
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Fig. 4. Visual traffic measurements. (a) Directional speed. (b) Southbound lane-level density. (c) Southbound vehicle-level flow.

increases during evening and results in a significant drop in
driving speed.

3) Vehicle-Level Measurements: Since VECTOR is based on
video technology, rich contextual information not obtained with
loop detectors can be extracted to further study traffic condi-
tions. The loop-like traffic statics, speed, density, and flow are fur-
ther categorized based on the vehicle type. Fig. 4(c) shows the
proportion of different vehicle types on the road over the course
of a day. As expected, the vehicle-specific speed measurements
reflect lower speeds for the large classes (semi and truck).

V. EMISSION/ENERGY ESTIMATION

Current emphasis on environmental issues, such as air pollu-
tion, greenhouse gases, and energy consumption has fueled re-
search in areas such as “green” vehicle technologies, alternative
fuels, and ITS. This has resulted in the commercial success of
hybrid automobiles and the reintroduction of consumer electric
vehicles as a way to curb emissions and energy consumption.
ITS advances in traffic monitoring and data collection help
improve traffic characterization and management; however, it
is still unclear exactly how the transportation network affects
emissions and how emissions contributions can be character-
ized by location, time, or mobile source.

It is generally difficult to measure pollution from specific
mobile sources under real-world conditions due to the mixing
and dispersion of emissions and contributions from additional
sources such as other vehicles, nearby factories, and secondary
pollutants. These issues are further influenced by environmental
factors, such as meteorological conditions and topographic
features. Some methods of emission measurements, such as
tunnel studies, remote sensing, and portable emission moni-
toring systems, address these problems to some extent. These
methods, however, either do not isolate emissions from specific
vehicles, are very limited in testing locations, or cannot be
practically applied to large sets of vehicles. A method to better
estimate emissions attributed to transportation and even specific
vehicle classes in real time is useful for traffic management and
policy makers, and health organizations.

Using a vision-based traffic management system, which is
able to accurately track individual vehicles (collecting dynamic
driving patterns) and determine their type, it is possible to
estimate the emissions and energy consumption from specific

vehicles on the road. By accumulating emissions data over time,
a real-time map can be formed to indicate the level of pollutants
on our roadways.

A. Vehicle Class Emission Modeling

To accurately determine the amount of emissions or fuel
usage from a particular vehicle, it is necessary to know cer-
tain vehicle characteristics such as weight, fuel type, engine
displacement, after-treatment technology, vehicle model year,
vehicle age, and how the vehicle is being operated (the driving
profile). Unfortunately, it is not possible to determine many of
these vehicle characteristics using conventional traffic cameras.
The resolution of these setups along with the vast number of
vehicles on the road with varying characteristics makes this
level of data collection almost impossible without the use of
other identifying techniques such as radio-frequency tags or
license plate recognition. As shown earlier, it is, however,
possible to distinguish between different classes of vehicles
using conventional traffic cameras. Each class of vehicles has
different emission properties that are generally related to vehi-
cle size and type.

At the current time ¢, an instantaneous emission value
Epq(t) for pollutant pol can be estimated for each vehicle
based on the vehicle class L and dynamic profile F'(t) as
follows:

Epoi(t) =hpr (L, F(1)). (8)
The functional mapping hp specifies how emissions are ob-
tained from the vehicle information and must be specified or
modeled.

B. VSP Approach

There are various approaches to estimating vehicle emis-
sions depending on the scope of the analysis and the available
data. Traditional emission modeling techniques utilize average
speed-based emission rates for estimation. One of the funda-
mental drawbacks of this modeling approach is that speed alone
is not a good predictor of emissions since speed under various
levels of acceleration will result in a wide range of emissions.
Acceleration is an important factor in the estimation of vehicle
load, which is well correlated with fuel use and consequently
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TABLE 1
VSP PARAMETER APPROXIMATIONS

Type  Mlkgl Ag[m?]  Cr Cy
Sedan 1360 2.0 00135 034
Pickup 2340 33 00135 043

SUV 3035 344 00135 041

Van 2270 346 00135 038

Bike 230 065 00250 09
Truck 11360 6.6 0.0094 0.7

Semi 27300 100 00094 085

emissions. To take advantage of this additional level of detail,
VSP [6] was used as the basis for emission rates. VSP is defined
as the instantaneous power to move a vehicle per the mass of
the vehicle. The calculation for VSP in kilowatts/metric tonne
is based on the following equation, simplified from the power
demand terms for a moving vehicle:

3
VSP(t)=v(t) (1.1a(t)+g sin(9)+gcr)+%w )
where

v = speed [m/s];

a = acceleration [m/s?];

g = gravity = 9.8 [m/s?];

0 = grade [radians];

C, = coefficient of rolling friction;

pa = density of air = 1.2 [kg/m?] at sea level and 20 °C;

Cq = coefficient of aerodynamic drag;

Ay = frontal area [m?;

M = mass [kg].

The vehicle dynamic information [v(t), a(t)] is encoded in
the trajectory F'(t). The parameter values in Table I are the
approximate values used for the seven VECTOR vehicle types
(merged is excluded) based on the NCHRP 25-11 [30] data set
and values found in literature.

Using the VSP approach, emissions are estimated by modi-
fying (8) as

Epol = h (L, VSP(1)) (10)

where class L represents the VECTOR vehicle type categories
(7) and VSP(t) encodes the vehicle emission-dynamics rela-
tionships. The mapping %, to produce emission values [31], is
modeled based on CMEM and MOVES, as described in the
following.

C. Vehicle-Specific Emission Tables

After accounting for the vehicle type and driving dynamics
with the VSP, the mapping h from VSP to a particular pollutant
emissions was determined. The VSP mapping is generated
using two different simulation models: CMEM [7] and the
EPA’s MOVES [32]. Emission tables developed for this project
provide instantaneous emission rates for VSP values between 0
and 40 kW/T and can be conveniently applied both in real time
and in post-processing. For each vehicle and at each time step,
a VSP value is calculated using (9) with vehicle-class-specific
constants of Table I. (An alternative, more computationally in-
tensive approach would be to use individual vehicle trajectories
as input to CMEM.)

1673

5 10 15 20 25 30 35 40
0.15 ;
® 0.1
2
O
=™ /
0 5 10 15 20 25 30 35 40
__ 04f
2
o 03
S o2
z
0:d e a—
0 : ; s i
0 5 10 15 20 25 30 35 40
VSP [kW/tonne]
Fig. 5. (Black) VSP-based emission rate values for the VECTOR pickup class

generated from (light green) weighted CMEM pickup truck categories.

1) CMEM: The VSP-based emission tables for this paper
were primarily generated from modeling results from CMEM
[7], which was developed at the Bourns College of Engi-
neering, Center for Environmental Research and Technology
(CE-CERT), University of California at Riverside. CMEM is
a modal emissions model intended primarily for use with mi-
croscale transportation models that typically produce second-
by-second vehicle trajectories. CMEM is capable of predicting
second-by-second fuel consumption and tailpipe emissions of
carbon monoxide (CO), carbon dioxide (CO3), hydrocarbons
(HC), and nitrogen oxides (NO) based on different modal
operations from an in-use vehicle fleet. CMEM consists of
nearly 30 vehicle/technology categories covering light-duty
vehicles and Class-8 heavy-duty diesel trucks. With CMEM,
it is possible to predict energy and emissions from individual
vehicles or from an entire fleet of vehicles, operating under a
variety of conditions.

One of the most important features of CMEM (and other
related models) is that it uses a physical power-demand ap-
proach based on a parameterized analytical representation of
fuel consumption and emissions production. In this type of
model, the fuel consumption and emissions process is broken
down into components that correspond to physical phenomena
associated with vehicle operation and emission production.
Each component is modeled as an analytical representation
consisting of various parameters that are characteristic of the
process. These parameters vary according to the vehicle type,
engine, emission technology, and level of deterioration. One
distinct advantage of this physical approach is that it is possible
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TABLE 1I
CLASSIFICATION CONFUSION MATRIX (78.4% ACCURACY ON 6491 TEST TRACKS)

sedan pickup suv van semi truck bike merged

sedan 2726 127 202 55 0 0 1 0
pickup 40 374 52 24 0 14 0 4
suv 411 113 1147 172 0 3 0 4
van 15 11 54 83 0 6 0 7
semi 0 0 0 0 26 1 0 1
truck 1 5 1 2 11 36 0 0
bike 1 0 0 0 0 0 18 0

merged 7 7 6 10 3 31 2 677

total 3201 637 1462 346 40 91 21 693

% correct 85.2 58.7 78.5 24.0 65.0 39.6 85.7 97.7

to adjust many of these physical parameters to predict energy
consumption and emissions of future vehicle models and appli-
cations of new technology (e.g., after treatment devices).

VSP and emission values are calculated for each CMEM
vehicle category using the Federal Test Procedure 75, US06
Supplemental Federal Test Procedure, and Modal Emission
Cycle [30] driving schedules. Vehicle population data from
CARB’s The EMission FACtors (EMFAC) model [3] model
for San Diego County and calendar year 2010 is used to
approximate fleet distributions for CMEM categories. CMEM
categories are further grouped into the VECTOR vehicle classes
for compositing. Fig. 5 shows compositing results for the
VECTOR pickup class. In this figure, the light green lines show
VSP emission results for individual CMEM vehicle categories
within the VECTOR pickup class, and the black line shows
the weighted composited VSP-based emission values for the
VECTOR pickup class. The emission values are binned in
1 kW/T bins, and in the figure, the first bin represents VSP
values between 0 and 1 kW/T.

In addition to the VECTOR sedan, pickup, and semi classes,
specific van and SUV categories were developed to model
emissions from these two vehicle types with the CMEM model.
To determine van and SUV CMEM categories, individual van
and SUV vehicles from the NCHRP 25-11 database from the
original CMEM project were identified (20 SUV vehicles and
37 vans), calibrated, and modeled using CMEM.

2) EPA MOVES Model: The remaining two VECTOR cat-
egories, i.e., truck and motorcycle, are not supported by the
CMEM model and are instead modeled using the 2010 MOVES
database, which is the EPA’s latest mobile source emission
model. The VECTOR truck category is a broad category and
encompasses a range of visually similar vehicle types such as
buses, garbage trucks, and medium-heavy trucks. For the most
part, these vehicles are large diesel-engine-driven vehicles, and
for this paper, this class was approximated as an urban bus
according to the EPA’s approximation for 1996-2006 class
48 vehicles from heavy-heavy duty (HHD) vehicles [32]. The
motorcycle class is taken directly from the motorcycle base
emission rates found in MOVES.

The MOVES modeling methodology is based on VSP-
binned emission rates. It is applicable at the microscale level
and can be integrated upward for mesoscale and macroscale
applications. The core of the MOVES modeling suite is a
MySQL database, which is referenced by the MOVES software
and graphic user interface to run elaborate analysis at various
temporal and spatial resolutions. At the fundamental level, the
MOVES model is a set of emission and energy use tables

binned by VSP operating mode. VSP operating mode bins are
VSP bins split not only by VSP but also by mode such as
acceleration, deceleration, braking, and speed range. MOVES
VSP operating mode bins are divided into three distinct speed
ranges in an effort to separate emission speed effects. For this
analysis, MOVES VSP operating mode bins with matching
VSP ranges were combined across vehicle speeds to create
approximate VSP emission tables. (An alternative approach is
to use the MOVES VSP operating bins with the speed ranges).
Emission rates were extracted from the MOVES database by
a query using the appropriate sourceBinID for the regula-
tory class and a sample model year group. The appropriate
polProcessIDs for CO, HC, NOy, and total energy were used
and ageGroupIDs for 0-3 and 4-5 years. VSP operating-mode
bins between 11 and 40 were used. Pollutant emission factors
were queried from the emissionratebyage table, and total
energy was queried from the emissionrate table. Total energy
was converted to CO using an oxidation factor of 1 and carbon
content of 0.00196 g/kJ [32].

VI. EXPERIMENTAL EVALUATION

The combination of real-time tracking and emissions model-
ing present in the CalSentry system gives rise to a completely
new type of performance measurement system. To assess the
performance, the vehicle classification scheme is evaluated,
followed by a comparison with PeMS loop-based emission
output.

A. Visual Vehicle Type Classification

The vehicle classifier was only evaluated during the daylight
hours of a single day (approximately 5:00-19:00) because the
detection and tracking does not work at night due to poor
lighting and headlight reflection on the road surface. Each hour,
a 5-min video clip was saved for manual annotation. Both the
type of vehicle and the lane of travel were recorded, resulting
in 6491 total tracks.

The percentage of the tracks classified as the correct vehicle
type was 78.44%. The full-day confusion matrix is shown in
Table II. The classifier has difficulties with the van and truck
classes because they are quite similar in appearance to SUV
and semi classes, respectively. Table III gives the number of test
vehicles (count) and classification accuracy for each hour of the
experiment. The results from a single 5-min clip is generally
in the 80% range, except between 08:00-11:00. There is a
significant performance drop during these morning hours due
to adverse lighting conditions, which caused large cast shadows
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TABLE III
PERCENTAGE ACCURACY FOR HOURLY TEST CLIPS
time count sedan pickup suv van semi truck bike merged total
06:21 405 94.9 59.5 81.9 31.6 50.0 33.3 0 97.5 81.5
07:19 497 96.2 32,5 83.2 06.7 66.7 25.0 100 98.0 84.7
08:17 530 61.2 333 91.9 14.3 50.0 50.0 100 96.7 67.6
09:15 444 53.2 38.7 82.3 53.9 37.5 23.1 100 96.8 63.7
10:13 357 36.8 26.7 77.3 26.7 71.4 40.0 0 93.9 51.0
11:11 417 63.4 47.2 90.4 28.0 66.7 33.3 - 89.6 68.6
12:09 432 86.0 71.7 82.6 48.0 50.0 37.5 100 96.9 80.8
13:08 393 95.6 76.3 83.5 39.1 100 50.0 - 97.9 87.0
14:06 449 96.9 77.8 84.2 18.2 - 66.7 100 94.9 86.2
15:04 492 96.0 76.4 81.9 23.1 100 09.1 100 100 85.4
16:02 553 97.1 66.2 76.0 24.0 100 55.6 100 100 85.7
17:00 630 99.1 65.5 62.0 03.6 - 0 100 94.5 83.0
17:45 297 89.0 75.9 52.8 10.0 - 100 67.0 97.7 76.0
18:45 382 96.0 57.9 73.9 10.5 - 100 50.0 97.9 84.6
19:43 222 95.0 77.8 78.5 0 100 100 - 100 86.5
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Fig. 6. Traffic statistics for one week. (a) Flow. (b) Speed.

from the vehicles. This typically caused larger detections that
resulted in misclassification into the SUV type. Lighting issues
are not new to visual monitoring, and shadow suppression
techniques [17] could help improve classifier performance.

B. Vision-Based Traffic Statistics

Although real-time data are needed to understand current
conditions, historical measurements provide the data for model-

ing and provides a deeper understanding of higher order effects.
The observed flow and speed over a given week are shown in
Fig. 6. The differences between weekday and weekend traffic
patterns are quite clear. During the weekdays, there is a large
increase in demand between the evening commute hours of
15:00 and 17:00. The increased flow rate causes congestion and
results in a large drop in speed. On the weekdays, there is a 50%
decrease in average speed during the commute hours, whereas
the weekends show no significant speed difference. By storing
measurements in a database, they can be utilized to learn and
model variations in traffic patterns and behavior.

During the daylight test, 98% of vehicles traveling south
(closest to the camera) were identified in the correct lane. The
northbound direction, which is much further away and suffers
from more perspective distortion, only had 93% total accuracy
in lane assignment. The northbound 3-lane had the poorest
performance at 84.4%. This implies high lane-level accuracy
is possible with the proper camera—road configuration.

C. Real-Time Vehicle Emission Aggregation

Using Table I along with VSP-based emission profiles (high-
lighted in Fig. 5), the emissions from each vehicle were
calculated at 10 Hz and archived. The 10-Hz update rate
was chosen as a compromise to smooth variability between
VECTOR’s high 30-fps rate and the natural 1-Hz operation
of the microsimulation model, which obscures the trajectory
profile. Emission measurements were aggregated into 30-s in-
crements before archival to provide more stable timescales that
match PeMS loop detector rates.

Fig. 7(a) shows the emissions (CO5, CO, HC, and NOy)
rates (in grams per second) in the southbound direction of the
highway. The HC and NOx, rates are scaled 50x and CO by 3x
for plotting purposes since the CO4 rate is much higher. The
time-series plots have a number of spikes that should not come
as a surprise because of the nature of traffic. During a particular
30-s time interval, the number of and types of cars and driving
style, which greatly impacts emission production, is variable.
In Fig. 7(b), the emissions are aggregated over a longer 5-min
time period. The emission measurements are significantly more
stable at this timescale and provides a better indication of the
daily patterns. Around the 16:00-17:00 time period, there is
a drop in emissions due to congestion. At this time, vehicles
move slower, and the VSP is greatly influenced by speed
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Fig. 7. Highway emission estimates for 30-s and 5-min aggregates. (a) 30-s CalSentry. (b) 5-min CalSentry. (c) 30-sec PeMS. (d) 5-min PeMS.

(0 speed results in no VSP output). Further work will need to
take into account idling emissions.

The emissions measurements generated by CalSentry
are compared with loop-detector-based estimates, shown in
Fig. 7(c) and (d). These plots were generated by using the PeMS
speed measurement (no acceleration) in (9). The PeMS flow
value was divided into the VECTOR vehicle classes based on
the EMFAC registration distribution resulting in fixed ratios
of all vehicles at all times. The 5-min aggregates are of sim-
ilar scale and have the drop-off during the evening commute.
However, notice that the loop data produces a much smaller
gap between the CO and NOy rates, which requires further
investigation.

CalSentry results are generally more variable and result in
slightly higher estimated emission rates than the loop estimates
solely based on average speed.

D. Future Work

Future work is needed to evaluate the validity of the emission
estimates, which will require more sophisticated techniques
such as tunnel measurements or instrumented vehicles. Al-
though it is expected that the accuracy of emission estimates

with the CalSentry system will be better than loop-based es-
timates due to the inclusion of acceleration terms and that
the system will significantly improve the quality of on-road
vehicle emission estimates, there are several factors that impact
prediction accuracy. These factors include misclassification of
vehicle categories, lumping of certain vehicle types (e.g., truck
category), unknown vehicle operating weights (particularly for
heavy duty vehicles), unknown vehicle conditions (bad cat-
alysts, tampered emission controls, engine malfunctions, age
of the vehicle), and the representativeness of emission factors
that will vary based on the test-vehicle sample size used to
develop them. However, these same factors impact loop-based
estimation, and loops typically do not benefit from driving
profiles or diverse vehicle classification.

VII. CONCLUDING REMARKS

This paper introduced the first vision-based system for traffic
monitoring and emission/energy measurement. The CalSentry
system integrates live video processing, emissions modeling,
and historical data into a visualization framework for providing
real-time emissions. Real-time vision-based tracking was used
to obtain dynamics measurements and vehicle-type classifica-
tion. A VSP-based approach, utilizing CMEM and MOVES
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emission models, converted the vehicle class and dynamic
driving profile into CO5, CO, HC, and NO, emission estimates.
A public website provided a color-coded map based on the
current emission conditions on a highway link that could be
extended for wider area coverage and used for policy decisions
and real-time traffic management.
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